Kinocilium

Last updated
Kinocilium
Kinocilium.svg
Details
Identifiers
Latin kinocilium
TH H1.00.01.1.01015
Anatomical terminology

A kinocilium is a special type of cilium on the apex of hair cells located in the sensory epithelium of the vertebrate inner ear. Contrasting with stereocilia, which are numerous, there is only one kinocilium on each hair cell. The kinocilium can be identified by its apical position as well as its enlarged tip. [1]

Contents

Together with stereocilia, the kinocilium regulates depolarization and hyperpolarization of the hair cell, which is a neuron that can generate action potentials. When the stereocilia and kinocilium move further apart, the cell hyperpolarizes. When they move closer together, the cell depolarizes and may fire an action potential. [1]

Anatomy in humans

Kinocilia are found on the apical surface of hair cells and are involved in both the morphogenesis of the hair bundle and mechanotransduction. Vibrations (either by movement or sound waves) cause displacement of the hair bundle, resulting in depolarization or hyperpolarization of the hair cell. The depolarization of the hair cells in both instances causes signal transduction via neurotransmitter release. [1]

Role in hair bundle morphogenesis

Each hair cell has a single, microtubular kinocilium. Before morphogenesis of the hair bundle, the kinocilium is found in the center of the apical surface of the hair cell surrounded by 20-300 microvilli. During hair bundle morphogenesis, the kinocilium moves to the cell periphery dictating hair bundle orientation. As the kinocilium does not move, microvilli surrounding it begin to elongate and form actin stereocilia. In many mammals, but not in humans, [1] the kinocilium will regress once the hair bundle has matured. [2]

Auditory system

The movement of the hair bundle, as a result of endolymph [2] flow, will cause potassium channels on the stereocilia to open. [1] This is mostly due to the pulling force stereocilia exerts on its neighboring stereocilia via interconnecting links that hold stereocilia together (usually from tallest to shortest) and this leads to the depolarization of the hair cell. This pattern of depolarization should not be confused with the more common depolarization which involves the influx of Na+ into the cell while K+ channels stay closed. Endolymph composition resembles that of the intracellular fluid (more K+ and less Na+) more closely compared to its counterpart, perilymph which resembles the extracellular fluid (more Na+ and less K+ compared to intracellular matrix). This depolarization will open voltage gated calcium channels. The influx of calcium then triggers the cell to release vesicles containing excitatory neurotransmitters into a synapse. The post-synaptic neurite then sends an action potential to the Spiral Ganglia of Gard. Unlike the hair cells of the crista ampullaris or the maculae of the saccule and utricle, hair cells of the cochlear duct do not possess kinocilia.[ citation needed ]

Vestibular apparatus

Kinocilia are present in the crista ampullaris of the semicircular ducts and the sensory maculae of the utricle and saccule. [1] One kinocilium is the longest cilium located on the hair cell next to 40–70 stereocilia. During movement of the body, the hair cell is depolarized when the stereocilia move toward the kinocilium. The depolarization of the hair cell causes neurotransmitter to be released and an increase in firing frequency of cranial nerve VIII. When the stereocilia tilt away from the kinocilium, the hair cell is hyperpolarized, decreasing the amount of neurotransmitter released, which decreases the firing frequency of cranial nerve VIII. [3]

Anatomy in fish and frogs

The apical surface of a sensory fish hair cell usually has numerous stereocilia and a single, much longer kinocilium. Deflection of the stereocilia toward or away from the kinocilium causes an increase or decrease in the firing rate of the sensory neuron innervating the hair cell at its basal surface.[ citation needed ]

Hair cells in fish and some frogs are used to detect water movements around their bodies. These hair cells are embedded in a jelly-like protrusion called cupula. The hair cells therefore can not be seen and do not appear on the surface of skin of fish and frogs.[ citation needed ]

See also

Related Research Articles

<span class="mw-page-title-main">Inner ear</span> Innermost part of the vertebrate ear

The inner ear is the innermost part of the vertebrate ear. In vertebrates, the inner ear is mainly responsible for sound detection and balance. In mammals, it consists of the bony labyrinth, a hollow cavity in the temporal bone of the skull with a system of passages comprising two main functional parts:

<span class="mw-page-title-main">Sense of balance</span> Physiological sense regarding posture

The sense of balance or equilibrioception is the perception of balance and spatial orientation. It helps prevent humans and nonhuman animals from falling over when standing or moving. Equilibrioception is the result of a number of sensory systems working together; the eyes, the inner ears, and the body's sense of where it is in space (proprioception) ideally need to be intact.

<span class="mw-page-title-main">Vestibulocochlear nerve</span> Cranial nerve VIII, for hearing and balance

The vestibulocochlear nerve or auditory vestibular nerve, also known as the eighth cranial nerve, cranial nerve VIII, or simply CN VIII, is a cranial nerve that transmits sound and equilibrium (balance) information from the inner ear to the brain. Through olivocochlear fibers, it also transmits motor and modulatory information from the superior olivary complex in the brainstem to the cochlea.

<span class="mw-page-title-main">Semicircular canals</span> Organ located in innermost part of ear

The semicircular canals are three semicircular interconnected tubes located in the innermost part of each ear, the inner ear. The three canals are the lateral, anterior and posterior semicircular canals. They are the part of the bony labyrinth, a periosteum-lined cavity on the petrous part of the temporal bone filled with perilymph.

<span class="mw-page-title-main">Lateral line</span> Sensory system in fish

The lateral line, also called the lateral line organ (LLO), is a system of sensory organs found in fish, used to detect movement, vibration, and pressure gradients in the surrounding water. The sensory ability is achieved via modified epithelial cells, known as hair cells, which respond to displacement caused by motion and transduce these signals into electrical impulses via excitatory synapses. Lateral lines play an important role in schooling behavior, predation, and orientation.

<span class="mw-page-title-main">Utricle (ear)</span> Membranous labyrinth in the vestibule of ear

The utricle and saccule are the two otolith organs in the vertebrate inner ear. They are part of the balancing system in the vestibule of the bony labyrinth. They use small stones and a viscous fluid to stimulate hair cells to detect motion and orientation. The utricle detects linear accelerations and head-tilts in the horizontal plane. The word utricle comes from Latin uter 'leather bag'.

<span class="mw-page-title-main">Saccule</span> Bed of sensory cells in the inner ear

The saccule is a bed of sensory cells in the inner ear. It translates head movements into neural impulses for the brain to interpret. The saccule detects linear accelerations and head tilts in the vertical plane. When the head moves vertically, the sensory cells of the saccule are disturbed and the neurons connected to them begin transmitting impulses to the brain. These impulses travel along the vestibular portion of the eighth cranial nerve to the vestibular nuclei in the brainstem.

<span class="mw-page-title-main">Vestibular system</span> Sensory system that facilitates body balance

The vestibular system, in vertebrates, is a sensory system that creates the sense of balance and spatial orientation for the purpose of coordinating movement with balance. Together with the cochlea, a part of the auditory system, it constitutes the labyrinth of the inner ear in most mammals.

<span class="mw-page-title-main">Stimulus (physiology)</span> Detectable change in the internal or external surroundings

In physiology, a stimulus is a detectable change in the physical or chemical structure of an organism's internal or external environment. The ability of an organism or organ to detect external stimuli, so that an appropriate reaction can be made, is called sensitivity (excitability). Sensory receptors can receive information from outside the body, as in touch receptors found in the skin or light receptors in the eye, as well as from inside the body, as in chemoreceptors and mechanoreceptors. When a stimulus is detected by a sensory receptor, it can elicit a reflex via stimulus transduction. An internal stimulus is often the first component of a homeostatic control system. External stimuli are capable of producing systemic responses throughout the body, as in the fight-or-flight response. In order for a stimulus to be detected with high probability, its level of strength must exceed the absolute threshold; if a signal does reach threshold, the information is transmitted to the central nervous system (CNS), where it is integrated and a decision on how to react is made. Although stimuli commonly cause the body to respond, it is the CNS that finally determines whether a signal causes a reaction or not.

<span class="mw-page-title-main">Hair cell</span> Auditory sensory receptor nerve cells

Hair cells are the sensory receptors of both the auditory system and the vestibular system in the ears of all vertebrates, and in the lateral line organ of fishes. Through mechanotransduction, hair cells detect movement in their environment.

<span class="mw-page-title-main">Stereocilia (inner ear)</span> Mechanosensing organelles of hair cells

In the inner ear, stereocilia are the mechanosensing organelles of hair cells, which respond to fluid motion in numerous types of animals for various functions, including hearing and balance. They are about 10–50 micrometers in length and share some similar features of microvilli. The hair cells turn the fluid pressure and other mechanical stimuli into electric stimuli via the many microvilli that make up stereocilia rods. Stereocilia exist in the auditory and vestibular systems.

The vestibular ganglion is a collection of cell bodies belonging to first order sensory neurons of the vestibular nerve. It is located within the internal auditory canal.

<span class="mw-page-title-main">Ampullary cupula</span>

The ampullary cupula, or cupula, is a structure in the vestibular system, providing the sense of spatial orientation.

<span class="mw-page-title-main">Otolithic membrane</span>

The otolithic membrane is a fibrous structure located in the vestibular system of the inner ear. It plays a critical role in the brain's interpretation of equilibrium. The membrane serves to determine if the body or the head is tilted, in addition to the linear acceleration of the body. The linear acceleration could be in the horizontal direction as in a moving car or vertical acceleration such as that felt when an elevator moves up or down.

<span class="mw-page-title-main">Crista ampullaris</span>

The crista ampullaris is the sensory organ of rotation. They are found in the ampullae of each of the semicircular canals of the inner ear, meaning that there are three pairs in total. The function of the crista ampullaris is to sense angular acceleration and deceleration.

<span class="mw-page-title-main">Stereocilia</span>

Stereocilia are non-motile apical cell modifications. They are distinct from cilia and microvilli, but are closely related to microvilli. They form single "finger-like" projections that may be branched, with normal cell membrane characteristics. They contain actin. Stereocilia are found in the vas deferens, the epididymis, and the sensory cells of the inner ear.

The saccule is the smaller sized vestibular sac ; it is globular in form, and lies in the recessus sphæricus near the opening of the scala vestibuli of the cochlea. Its anterior part exhibits an oval thickening, the macula of saccule, to which are distributed the saccular filaments of the acoustic nerve.

The vestibular evoked myogenic potential is a neurophysiological assessment technique used to determine the function of the otolithic organs of the inner ear. It complements the information provided by caloric testing and other forms of inner ear testing. There are two different types of VEMPs. One is the oVEMP and another is the cVEMP. The oVEMP measures integrity of the utricule and superior vestibular nerve and the cVemp measures the saccule and the inferior vestibular nerve.

The neural encoding of sound is the representation of auditory sensation and perception in the nervous system. The complexities of contemporary neuroscience are continually redefined. Thus what is known of the auditory system has been continually changing. The encoding of sounds includes the transduction of sound waves into electrical impulses along auditory nerve fibers, and further processing in the brain.

<span class="mw-page-title-main">Tip link</span>

Tip links are extracellular filaments that connect stereocilia to each other or to the kinocilium in the hair cells of the inner ear. Mechanotransduction is thought to occur at the site of the tip links, which connect to spring-gated ion channels. These channels are cation-selective transduction channels that allow potassium and calcium ions to enter the hair cell from the endolymph that bathes its apical end. When the hair cells are deflected toward the kinocilium, depolarization occurs; when deflection is away from the kinocilium, hyperpolarization occurs. The tip link is made of two different cadherin molecules, protocadherin 15 and cadherin 23. It has been found that the tip links are relatively stiff, so it is thought that there has to be something else in the hair cells that is stretchy which allows the stereocilia to move back and forth.

References

  1. 1 2 3 4 5 6 Mescher, Anthony L. (2021). "Chapter 23: The Eye & Ear: Special Sense Organs". Junqueira's basic histology: text and atlas. Lange medical books (16th ed.). New York: McGraw-Hill. ISBN   978-1-260-46298-2.
  2. 1 2 Schwander M, Kachar B, Müller U (July 2010). "Review series: The cell biology of hearing". The Journal of Cell Biology. 190 (1): 9–20. doi:10.1083/jcb.201001138. PMC   2911669 . PMID   20624897.
  3. Ross. 2006. Histology: A Test and Atlas[ page needed ]

Further reading