Pegasus (satellite)

Last updated

Pegasus satellite.jpg
Pegasus satellite, attached to the S-IV upper stage
Manufacturer Fairchild Hiller
Country of originUnited States
Operator NASA
Applications Micrometeoroid detection
Specifications
Launch mass1,450 kilograms (3,200 lb)
Dimensions29 meters (96 ft) wide by 4.1 meters (13.6 ft) long
Power Solar cells
Regime Low Earth orbit
Production
Statusretired
Built3
Launched3
OperationalFebruary 16, 1965
RetiredAugust 29, 1968
Failed0
Maiden launchFebruary 16, 1965
Last launchJuly 30, 1965
Configuration
Pegasus Deployment sequence.png
Deployment of a Pegasus Satellite

The Pegasus Project was a NASA initiative to study the frequency of micrometeoroid impacts on spacecraft by means of a constellation of three satellites launched in 1965. [1] [2] All three Pegasus satellites were launched by Saturn I rockets, and remained connected with their upper stages.

Contents

The Pegasus satellites were named for the winged horse of Greek mythology and was first lofted into space by a NASA Saturn I rocket on February 16, 1965. Like its namesake, the Pegasus satellite was notable for its "wings", a pair of 96-foot (29 m)-long, 14-foot (4.3 m)-wide arrays of 104 panels fitted with sensors to detect punctures by micrometeoroids at high altitudes, in support of the Apollo Program to send crewed lunar landing missions starting by 1970. Micrometeoroids were believed to be potentially hazardous to the Apollo crew if they could puncture the spacecraft skin. The sensors successfully measured the frequency, size, direction and penetration of scores of micrometeoroid impacts. The satellite also carried sample protective shields mounted on the arrays.

The NASA Marshall Space Flight Center was responsible for the design, production and operation of the three Pegasus satellites which were launched by Saturn I rocket test flights in 1965. At launch, a boilerplate Apollo Command/Service Module and launch escape system tower were atop the Saturn I, with the Pegasus experiment folded inside the Service Module. After first stage separation and second-stage ignition, the launch escape system was jettisoned. When the second stage attained orbit, the 10,000-pound Apollo boilerplate Command and Service modules were jettisoned into a separate orbit. Then a motor driven device extended the winglike panels on the Pegasus to a span of 96 feet (29 m). The Pegasus wings remained attached to the Saturn I's second stage as planned.

A television camera, mounted on the interior of the Service Module adapter, provided pictures of the satellite deploying in space and as historian Roger E. Bilstein has written, "captured a vision of the eerie silent wings of Pegasus I as they haltingly deployed." [3] The satellite exposed more than 2,300 square feet (210 m2) of instrumented surface, with thickness varying up to 0.016-inch (0.41 mm).

Ernst Stuhlinger, then director of the MSFC Research Projects Laboratory, noted that all three Pegasus missions provided more than data on micrometeoroid penetration. Scientists also were able to gather data regarding gyroscopic motion and orbital characteristics of rigid bodies in space, lifetimes of electronic components in the space environment, and thermal control systems and the degrading effects of space on thermal control coatings. Space historian Roger Bilstein reported that for physicists the Pegasus missions provided additional knowledge about the radiation environments of space, the Van Allen radiation belts and other phenomena.

Orbits

Related Research Articles

<span class="mw-page-title-main">Apollo 4</span> First test flight of the Apollo Saturn V rocket

Apollo 4, also known as SA-501, was the uncrewed first test flight of the Saturn V launch vehicle, the rocket that eventually took astronauts to the Moon. The space vehicle was assembled in the Vehicle Assembly Building, and was the first to be launched from Kennedy Space Center (KSC) in Florida, ascending from Launch Complex 39, where facilities built specially for the Saturn V had been constructed.

<span class="mw-page-title-main">Apollo 5</span> Uncrewed first test flight of the Apollo Lunar Module

Apollo 5, also known as AS-204, was the uncrewed first flight of the Apollo Lunar Module (LM) that would later carry astronauts to the surface of the Moon. The Saturn IB rocket bearing the LM lifted off from Cape Kennedy on January 22, 1968. The mission was successful, though due to programming problems an alternate mission to that originally planned was executed.

<span class="mw-page-title-main">Saturn (rocket family)</span> Family of American heavy-lift rocket launch vehicles

The Saturn family of American rockets was developed by a team of former German rocket engineers and scientists led by Wernher von Braun to launch heavy payloads to Earth orbit and beyond. The Saturn family used liquid hydrogen as fuel in the upper stages. Originally proposed as a military satellite launcher, they were adopted as the launch vehicles for the Apollo Moon program. Three versions were built and flown: the medium-lift Saturn I, the heavy-lift Saturn IB, and the super heavy-lift Saturn V.

<span class="mw-page-title-main">AS-101</span> 1964 Apollo Program test flight

AS-101 was the sixth flight of the Saturn I launch vehicle, which carried the first boilerplate Apollo spacecraft into low Earth orbit. The test took place on May 28, 1964, lasting for four orbits. The spacecraft and its upper stage completed a total of 54 orbits before reentering the atmosphere and crashing in the Pacific Ocean on June 1, 1964.

<span class="mw-page-title-main">AS-102</span>

AS-102 was the seventh flight of the Saturn I launch vehicle, which carried the boilerplate Apollo spacecraft BP-15 into low Earth orbit. The test took place on September 18, 1964, lasting for five orbits. The spacecraft and its upper stage completed 59 orbits before reentering the atmosphere and crashing in the Indian Ocean on September 22, 1964.

<span class="mw-page-title-main">Gemini 11</span> 1966 NASA crewed spaceflight

Gemini 11 was the ninth crewed spaceflight mission of NASA's Project Gemini, which flew from September 12 to 15, 1966. It was the 17th crewed American flight and the 25th spaceflight to that time. Astronauts Charles "Pete" Conrad Jr. and Richard F. Gordon Jr. performed the first direct-ascent rendezvous with an Agena Target Vehicle, docking with it 1 hour 34 minutes after launch; used the Agena rocket engine to achieve a record high-apogee Earth orbit; and created a small amount of artificial gravity by spinning the two spacecraft connected by a tether. Gordon also performed two extra-vehicular activities for a total of 2 hours 41 minutes.

<span class="mw-page-title-main">Apollo (spacecraft)</span> Saturn V-launched payload that took men to the Moon

The Apollo spacecraft was composed of three parts designed to accomplish the American Apollo program's goal of landing astronauts on the Moon by the end of the 1960s and returning them safely to Earth. The expendable (single-use) spacecraft consisted of a combined command and service module (CSM) and an Apollo Lunar Module (LM). Two additional components complemented the spacecraft stack for space vehicle assembly: a spacecraft–LM adapter (SLA) designed to shield the LM from the aerodynamic stress of launch and to connect the CSM to the Saturn launch vehicle and a launch escape system (LES) to carry the crew in the command module safely away from the launch vehicle in the event of a launch emergency.

The Saturn I was a rocket designed as the United States' first medium lift launch vehicle for up to 20,000-pound (9,100 kg) low Earth orbit payloads. The rocket's first stage was built as a cluster of propellant tanks engineered from older rocket tank designs, leading critics to jokingly refer to it as "Cluster's Last Stand". Its development was taken over from the Advanced Research Projects Agency (ARPA) in 1958 by the newly formed civilian NASA. Its design proved sound and flexible. It was successful in initiating the development of liquid hydrogen-fueled rocket propulsion, launching the Pegasus satellites, and flight verification of the Apollo command and service module launch phase aerodynamics. Ten Saturn I rockets were flown before it was replaced by the heavy lift derivative Saturn IB, which used a larger, higher total impulse second stage and an improved guidance and control system. It also led the way to development of the super-heavy lift Saturn V which carried the first men to landings on the Moon in the Apollo program.

<span class="mw-page-title-main">AS-104</span> 1965 orbital test of a Apollo spacecraft

AS-104 was the fourth orbital test of a boilerplate Apollo spacecraft, and the second flight of the Pegasus micrometeoroid detection satellite. It was launched by SA-8, the ninth Saturn I carrier rocket.

<span class="mw-page-title-main">AS-103</span> Third orbital flight test of a boilerplate Apollo spacecraft, February 16, 1965

AS-103 was the third orbital flight test of a boilerplate Apollo spacecraft, and the first flight of a Pegasus micrometeoroid detection satellite. Also known as SA-9, it was the third operational launch of a two-stage Saturn I launch vehicle.

<span class="mw-page-title-main">AS-105</span> Fifth and final orbital flight of a boilerplate Apollo spacecraft, July 30, 1965

AS-105 was the fifth and final orbital flight of a boilerplate Apollo spacecraft, and the third and final launch of a Pegasus micrometeoroid detection satellite. It was launched by SA-10, the tenth and final Saturn I rocket, in 1965.

<span class="mw-page-title-main">Boilerplate (spaceflight)</span> Nonfunctional spacecraft or payload

A boilerplate spacecraft, also known as a mass simulator, is a nonfunctional craft or payload that is used to test various configurations and basic size, load, and handling characteristics of rocket launch vehicles. It is far less expensive to build multiple, full-scale, non-functional boilerplate spacecraft than it is to develop the full system. In this way, boilerplate spacecraft allow components and aspects of cutting-edge aerospace projects to be tested while detailed contracts for the final project are being negotiated. These tests may be used to develop procedures for mating a spacecraft to its launch vehicle, emergency access and egress, maintenance support activities, and various transportation processes.

<span class="mw-page-title-main">Saturn V dynamic test vehicle</span> Moon rocket test article in Huntsville, Alabama

The Saturn V dynamic test vehicle, designated SA-500D, is a prototype Saturn V rocket used by NASA to test the performance of the rocket when vibrated to simulate the shaking which subsequent rockets would experience during launch. It was the first full-scale Saturn V completed by the Marshall Space Flight Center (MSFC). Though SA-500D never flew, it was instrumental in the development of the Saturn V rocket which propelled the first men to the Moon as part of the Apollo program. Built under the direction of Dr. Wernher von Braun, it served as the test vehicle for all of the Saturn support facilities at MSFC.

<span class="mw-page-title-main">Saturn V</span> American super heavy-lift expendable rocket

The Saturn V is a retired American super heavy-lift launch vehicle developed by NASA under the Apollo program for human exploration of the Moon. The rocket was human-rated, had three stages, and was powered by liquid fuel. Flown from 1967 to 1973, it was used for nine crewed flights to the Moon, and to launch Skylab, the first American space station.

<span class="mw-page-title-main">OPS 0855</span> American boilerplate Manned Orbital Laboratory spacecraft

OPS 0855, also designated OV4-3, was an American boilerplate Manned Orbiting Laboratory spacecraft launched in 1966. It was flown to demonstrate the launch configuration for future MOL missions. A number of research payloads, designated Manifold, were carried on board, which were intended to operate for 75 days. However, the spacecraft ceased operations after just 30 days. It was built from a decommissioned HGM-25A Titan I first stage oxidizer tank, bolted to a Transtage. It was part of the MOL and Orbiting Vehicle projects.

Advanced Gemini is a number of proposals that would have extended the Gemini program by the addition of various missions, including crewed low Earth orbit, circumlunar and lunar landing missions. Gemini was the second crewed spaceflight program operated by NASA, and consisted of a two-seat spacecraft capable of maneuvering in orbit, docking with uncrewed spacecraft such as Agena Target Vehicles, and allowing the crew to perform tethered extra-vehicular activities.

<span class="mw-page-title-main">Pegasus 1</span> American satellite

Pegasus 1 or I, known before launch as Pegasus A, was an American satellite which was launched in 1965 to study micrometeoroid impacts in low Earth orbit. It was the first of three Pegasus satellites to be launched. The Pegasus spacecraft were manufactured by Fairchild Hiller, and operated by NASA.

<span class="mw-page-title-main">Pegasus 2</span> American satellite

Pegasus 2 or Pegasus II, known before launch as Pegasus B was an American satellite which was launched in 1965 to study micrometeoroid impacts in Low Earth orbit. It was the second of three Pegasus satellites to be launched, following the launch of Pegasus 1 three months earlier. The Pegasus spacecraft were manufactured by Fairchild Hiller, and operated by NASA.

<span class="mw-page-title-main">Pegasus 3</span> American satellite

Pegasus 3 or III, also known as Pegasus C before launch, was an American satellite which was launched in 1965 to study micrometeoroid impacts in Low Earth orbit. It was the last of three Pegasus satellites to be launched, the previous two having been launched earlier the same year. It was manufactured by Fairchild Hiller, and operated by NASA.

<span class="mw-page-title-main">Elektron (satellite program)</span> Series of Soviet satellites

Elektron ('electron'), in American sources sometimes called Electron, was the first Soviet multiple satellite program, comprising two identical pairs of particle physics satellites launched by the Soviet Union in 1964. The four spacecraft simultaneously monitored the lower and upper Van Allen radiation belts and returned a considerable volume of data regarding radiation in space and atmospheric conditions to an altitude of more than 58,000 kilometres (36,000 mi) above the Earth. Two of the four launched satellites are still in orbit As of 2023, the other two having reentered.

References

  1. Rosenthal, R. (1965). "The Pegasus Meteoroid Technology Satellite". Unmanned Spacecraft Meeting 1965. Reston, Virginia: American Institute of Aeronautics and Astronautics. doi:10.2514/6.1965-1442.
  2. Johnson, W. G. (November 1966). "The meteoroid satellite project Pegasus First summary report". NASA Technical Reports Server. Retrieved September 25, 2020.
  3. Bilstein, Roger E. Bilstein (1996). Stages to Saturn: A Technological History of the Apollo/Saturn Launch Vehicle. Washington, DC: NASA History Office.

PD-icon.svg This article incorporates public domain material from websites or documents of the National Aeronautics and Space Administration .