Trimethyltrienolone

Last updated
Trimethyltrienolone
R-2956.svg
Clinical data
Other namesTMT; R-2956; RU-2956; 2α,2β,17α-Trimethyltrienolone; 2α,2β,17α-Trimethyltrenbolone; 2α,2β-Dimethylmetribolone; δ9,11-2α,2β,17α-trimethyl-19-nortestosterone; 2α,2β,17α-Trimethylestra-4,9,11-trien-17β-ol-3-one; 17β-Hydroxy-2α,2β,17α-trimethylestra-4,9,11-trien-3-one
Drug class Steroidal antiandrogen
ATC code
  • None
Identifiers
  • (8R,13S,14S,17R)-17-hydroxy-2,2,13,17-tetramethyl-6,7,8,14,15,16-hexahydro-1H-cyclopenta[a]phenanthren-3-one
CAS Number
PubChem CID
ChemSpider
CompTox Dashboard (EPA)
Chemical and physical data
Formula C21H28O2
Molar mass 312.453 g·mol−1
3D model (JSmol)
  • CC1(CC2=C3C=CC4(C(C3CCC2=CC1=O)CCC4(C)O)C)C
  • InChI=1S/C21H28O2/c1-19(2)12-16-13(11-18(19)22)5-6-15-14(16)7-9-20(3)17(15)8-10-21(20,4)23/h7,9,11,15,17,23H,5-6,8,10,12H2,1-4H3/t15-,17-,20-,21+/m0/s1
  • Key:VFKZTCQVCJGPGF-STRKUORWSA-N

Trimethyltrienolone (TMT), also known by its developmental code name R-2956 or RU-2956, is an antiandrogen medication which was never introduced for medical use but has been used in scientific research. [1] [2] [3]

Contents

Side effects

Due to its close relation to metribolone (methyltrienolone), it is thought that TMT may produce hepatotoxicity. [4]

Pharmacology

Pharmacodynamics

TMT is a selective and highly potent competitive antagonist of the androgen receptor (AR) with very low intrinsic/partial androgenic activity and no estrogenic, antiestrogenic, progestogenic, or antimineralocorticoid activity. [5] [6] The drug is a derivative of the extremely potent androgen/anabolic steroid metribolone (R-1881; 17α-methyltrenbolone), [6] [7] and has been reported to possess only about 4-fold lower affinity for the AR in comparison. [8] In accordance, it has relatively high affinity for the AR among steroidal antiandrogens, and almost completely inhibits dihydrotestosterone (DHT) binding to the AR in vitro at a mere 10-fold molar excess. [9] The AR weak partial agonistic activity of TMT is comparable to that of cyproterone acetate. [4]

Relative affinities (%) of TMT and related steroids
Compound PR AR ER GR MR
Testosterone 1–3, 1–5100<1<1, 1–5<1
5α-Dihydrotestosterone <1, 1–3100–125<1<1<1
Metribolone (RU-1881)200–300, 250–600200–300, 250–600<125–5015–25
Trimethyltrienolone (RU-2956)≤114<1<1<1
Notes: Values are percentages (%). Reference ligands (100%) were progesterone for the PR, testosterone for the AR, E2 for the ER, DEXA for the GR, and aldosterone for the MR. Sources: [10] [11] [12] [13] [6]

Chemistry

TMT, also known as 2α,2β,17α-trimethyltrienolone [14] or as δ9,11-2α,2β,17α-trimethyl-19-nortestosterone, as well as 2α,2β,17α-trimethylestra-4,9,11-trien-17β-ol-3-one, is a synthetic estrane steroid and a derivative of testosterone and 19-nortestosterone. [5] [15] [2] It is the 2α,2β,17α-trimethyl derivative of trenbolone (trienolone) and the 2α,2β-dimethyl derivative of metribolone (methyltrienolone), both of which are synthetic androgens/anabolic steroids. [15]

History

TMT was developed by Roussel Uclaf in France and was first known as early as 1969. [3] [16] [15] It was one of the earliest antiandrogens to be discovered and developed, along with others such as benorterone, BOMT, cyproterone, and cyproterone acetate. [5] [17] [18] [19] [20] The drug was under investigation by Roussel Uclaf for potential medical use, but was abandoned in favor of nonsteroidal antiandrogens like flutamide and nilutamide due to their comparative advantage of a complete lack of androgenicity. [1] Roussel Uclaf subsequently developed and introduced nilutamide for medical use. [21]

Related Research Articles

<span class="mw-page-title-main">Gestrinone</span> Chemical compound

Gestrinone, sold under the brand names Dimetrose and Nemestran among others, is a medication which is used in the treatment of endometriosis. It has also been used to treat other conditions such as uterine fibroids and heavy menstrual bleeding and has been investigated as a method of birth control. Gestrinone is used alone and is not formulated in combination with other medications. It is taken by mouth or in through the vagina.

<span class="mw-page-title-main">Norgestrienone</span> Chemical compound

Norgestrienone, sold under the brand names Ogyline, Planor, and Miniplanor, is a progestin medication which has been used in birth control pills, sometimes in combination with ethinylestradiol. It was developed by Roussel Uclaf and has been registered for use only in France. Under the brand name Planor, it has been marketed in France as 2 mg norgestrienone and 50 μg ethinylestradiol tablets. It is taken by mouth.

<span class="mw-page-title-main">Trestolone</span> Chemical compound

Trestolone, also known as 7α-methyl-19-nortestosterone (MENT), is an experimental androgen/anabolic steroid (AAS) and progestogen medication which has been under development for potential use as a form of hormonal birth control for men and in androgen replacement therapy for low testosterone levels in men but has never been marketed for medical use. It is given as an implant that is placed into fat. As trestolone acetate, an androgen ester and prodrug of trestolone, the medication can also be given by injection into muscle.

<span class="mw-page-title-main">Mibolerone</span> Chemical compound

Mibolerone, also known as dimethylnortestosterone (DMNT) and sold under the brand names Cheque Drops and Matenon, is a synthetic, orally active, and extremely potent anabolic–androgenic steroid (AAS) and a 17α-alkylated nandrolone (19-nortestosterone) derivative which was marketed by Upjohn for use as a veterinary drug. It was indicated specifically as an oral treatment for prevention of estrus (heat) in adult female dogs.

<span class="mw-page-title-main">Metribolone</span> Chemical compound

Metribolone is a synthetic and orally active anabolic–androgenic steroid (AAS) and a 17α-alkylated nandrolone (19-nortestosterone) derivative which was never marketed for medical use but has been widely used in scientific research as a hot ligand in androgen receptor (AR) ligand binding assays (LBAs) and as a photoaffinity label for the AR. More precisely, metribolone is the 17α-methylated derivative of trenbolone. It was investigated briefly for the treatment of advanced breast cancer in women in the late 1960s and early 1970s, but was found to produce signs of severe hepatotoxicity at very low dosages, and its development was subsequently discontinued.

<span class="mw-page-title-main">Demegestone</span> Chemical compound

Demegestone, sold under the brand name Lutionex, is a progestin medication which was previously used to treat luteal insufficiency but is now no longer marketed. It is taken by mouth.

The first antiandrogen was discovered in the 1960s. Antiandrogens antagonise the androgen receptor (AR) and thereby block the biological effects of testosterone and dihydrotestosterone (DHT). Antiandrogens are important for men with hormonally responsive diseases like prostate cancer, benign prostatic hyperplasia (BHP), acne, seborrhea, hirsutism and androgen alopecia. Antiandrogens are mainly used for the treatment of prostate diseases. Research from 2010 suggests that ARs could be linked to the disease progression of triple-negative breast cancer and salivary duct carcinoma and that antiandrogens can potentially be used to treat it.

<span class="mw-page-title-main">Cyproterone</span> Chemical compound

Cyproterone, also known by its developmental code name SH-80881, is a steroidal antiandrogen which was studied in the 1960s and 1970s but was never introduced for medical use. It is an analogue of cyproterone acetate (CPA), an antiandrogen, progestin, and antigonadotropin which was introduced instead of cyproterone and is widely used as a medication. Cyproterone and CPA were among the first antiandrogens to be developed.

<span class="mw-page-title-main">Benorterone</span> Chemical compound

Benorterone, also known by its developmental code name SKF-7690 and as 17α-methyl-B-nortestosterone, is a steroidal antiandrogen which was studied for potential medical use but was never marketed. It was the first known antiandrogen to be studied in humans. It is taken by mouth or by application to skin.

<span class="mw-page-title-main">Oxendolone</span> Chemical compound

Oxendolone, sold under the brand names Prostetin and Roxenone, is an antiandrogen and progestin medication which is used in Japan in the treatment of enlarged prostate. However, this use is controversial due to concerns about its clinical efficacy. Oxendolone is not effective by mouth and must be given by injection into muscle.

<span class="mw-page-title-main">Epiestriol</span> Chemical compound

Epiestriol (INN), or epioestriol (BAN), also known as 16β-epiestriol or simply 16-epiestriol as well as 16β-hydroxy-17β-estradiol, is a minor and weak endogenous estrogen, and the 16β-epimer of estriol. Epiestriol is used clinically in the treatment of acne. In addition to its estrogenic actions, epiestriol has been found to possess significant anti-inflammatory properties without glycogenic activity or immunosuppressive effects, an interesting finding that is in contrast to conventional anti-inflammatory steroids like hydrocortisone.

<span class="mw-page-title-main">BOMT</span> Chemical compound

BOMT, also known by its developmental code name Ro 7-2340 and as 6α-bromo-4-oxa-17α-methyl-5α-dihydrotestosterone, is a synthetic steroidal antiandrogen which was first developed in 1970 and was never marketed for medical use. It is the 6α-brominated, 4-oxygenated, and 17α-methylated derivative of the androgen dihydrotestosterone (DHT). Along with benorterone, cyproterone, and flutamide, BOMT was among the earliest antiandrogens to be developed and extensively studied, although it is less well-documented in comparison to the others. BOMT has been investigated clinically in the treatment of benign prostatic hyperplasia, though development for this use did not continue. There was also interest in BOMT for the potential applications of acne, pattern hair loss, and possibly prostate cancer, but it was not developed for these indications either.

<span class="mw-page-title-main">17α-Epiestriol</span> Chemical compound

17α-Epiestriol, or simply 17-epiestriol, also known as 16α-hydroxy-17α-estradiol or estra-1,3,5(10)-triene-3,16α,17α-triol, is a minor and weak endogenous estrogen, and the 17α-epimer of estriol. It is formed from 16α-hydroxyestrone. In contrast to other endogenous estrogens like estradiol, 17α-epiestriol is a selective agonist of the ERβ. It is described as a relatively weak estrogen, which is in accordance with its relatively low affinity for the ERα. 17α-Epiestriol has been found to be approximately 400-fold more potent than estradiol in inhibiting tumor necrosis factor α (TNFα)-induced vascular cell adhesion molecule 1 (VCAM-1) expression in vitro.

<span class="mw-page-title-main">Dienolone</span> Chemical compound

Dienolone, or nordienolone, also known as 19-nor-δ9(10)-testosterone, δ9(10)-nandrolone, or estra-4,9(10)-dien-17β-ol-3-one, is a synthetic anabolic-androgenic steroid (AAS) of the 19-nortestosterone group that was never marketed. It has been found to possess slightly lower affinity for the androgen receptor (AR) and progesterone receptor (PR) relative to nandrolone in rat and rabbit tissue bioassays, whereas trenbolone was found to possess the same affinity for the AR as dienolone but several-fold increased affinity for the PR. Dienedione is thought to be a prohormone of dienolone, while methyldienolone and ethyldienolone are orally active 17α-alkylated AAS derivatives of dienolone. In contrast, dienogest, the 17α-cyanomethyl derivative of dienolone, is a potent progestogen and antiandrogen.

<span class="mw-page-title-main">Dimethyltrienolone</span> Anabolic–androgenic steroid

Dimethyltrienolone is a synthetic, orally active, and extremely potent anabolic–androgenic steroid (AAS) and 17α-alkylated 19-nortestosterone (nandrolone) derivative which was never marketed for medical use. It has among the highest known affinity of any AAS for the androgen receptors, and has been said to be perhaps the most potent AAS to have ever been developed.

<span class="mw-page-title-main">Trendione</span> Chemical compound

Trendione, also known as estra-4,9,11-triene-3,17-dione, is an androgen prohormone as well as metabolite of the anabolic steroid trenbolone. Trendione is to trenbolone as androstenedione is to testosterone. The compound is inactive itself, showing more than 100-fold lower affinity for the androgen and progesterone receptors than trenbolone. It is a designer steroid and has been sold on the internet as a "nutritional supplement". Trendione is listed in the United States Designer Anabolic Steroid Control Act of 2014.

<span class="mw-page-title-main">RU-2309</span> Chemical compound

RU-2309, also known as 18-methylmetribolone, δ9,11-17α,18-dimethyl-19-nortestosterone, or 17α,18-dimethylestr-4,9,11-trien-17β-ol-3-one, is a 17α-alkylated androgen/anabolic steroid (AAS) of the 19-nortestosterone group which was never marketed. It is the C18 methyl or C13β ethyl derivative of metribolone. The compound is closely related to tetrahydrogestrinone (THG), which has the same chemical structure as RU-2309 except for possessing an ethyl group at the C17α position instead of a methyl group. Hence, it could also be referred to as 17α-methyl-THG. RU-2309 shows high affinity for the androgen, progesterone, and glucocorticoid receptors.

<span class="mw-page-title-main">Dimethyldienolone</span> Chemical compound

Dimethyldienolone, or 7α,17α-dimethyldienolone, also known as δ9-7α,17α-dimethyl-19-nortestosterone or as 7α,17α-dimethylestr-4,9-dien-17β-ol-3-one, is a 17α-alkylated androgen/anabolic steroid of the 19-nortestosterone group which was never marketed. It is closely related to dimethyltrienolone, as well as to mibolerone and metribolone. Dimethyldienolone shows high affinity for the androgen and progesterone receptors.

<span class="mw-page-title-main">EM-5854</span> Chemical compound

EM-5854 is a steroidal antiandrogen which was under development by Endoceutics, Inc. for the treatment of prostate cancer. It was first described in a patent in 2008, and was further characterized in 2012. EM-5854 reached phase I/II clinical trials for the treatment of prostate cancer but development was discontinued in March 2019.

<span class="mw-page-title-main">5α-Dihydroethisterone</span> Chemical compound

5α-Dihydroethisterone is an active metabolite of the formerly clinically used but now-discontinued progestin ethisterone and the experimental and never-marketed hormonal antineoplastic agent ethynylandrostanediol (HE-3235). Its formation from its parent drugs is catalyzed by 5α-reductase in tissues that express the enzyme in high amounts like the liver, skin, hair follicles, and prostate gland. 5α-DHET has significant affinity for steroid hormone receptors and may contribute importantly to the activities of its parent drugs.

References

  1. 1 2 Raynaud JP, Bonne C, Moguilewsky M, Lefebvre FA, Bélanger A, Labrie F (1984). "The pure antiandrogen RU 23908 (Anandron), a candidate of choice for the combined antihormonal treatment of prostatic cancer: a review". The Prostate. 5 (3): 299–311. doi:10.1002/pros.2990050307. PMID   6374639. S2CID   85417869. [...] flutamide but we soon abandoned the development of steroid derivatives such as RU 2956 because of inherent androgenicity [17], and focused on the nonsteroidal antiandrogens.
  2. 1 2 Negwer M, Scharnow HG (2001). Organic-chemical drugs and their synonyms: (an international survey). Wiley-VCH. p. 2158. ISBN   978-3-527-30247-5. 10635 (8596) C21H28O2 23983-19-9 17β-Hydroxy-2,2,17-trimethylestra-4,9,11-trien-3-one : (17β)-17-Hydroxy-2,2,17-trimethylestra-4,9,11-trien-3-one (•) S R 2956 U Anti-androgen
  3. 1 2 Hughes A, Hasan SH, Oertel GW (27 November 2013). Voss HE, Bahner F, Neumann F, Steinbeck H, Gräf KJ, Brotherton J, Horn HJ, Wagner RK (eds.). Androgens II and Antiandrogens / Androgene II und Antiandrogene. Springer Science & Business Media. pp. 1–. ISBN   978-3-642-80859-3.
  4. 1 2 Raynaud JP, Ojasoo T (November 1986). "The design and use of sex-steroid antagonists". Journal of Steroid Biochemistry. 25 (5B): 811–833. doi:10.1016/0022-4731(86)90313-4. PMID   3543501.
  5. 1 2 3 Azadian-Boulanger G, Bonne C, Secchi J, Raynaud JP (1974). "[17beta-hydroxy-2,2,17-trimethyl-estra-4, 9,11-trien-3-one). 1. Profil endocrinien. (Antiandrogenic activity of R2956 (17beta-hydroxy-2,2,17-trimethyl-estra-4,9,11-trien-3-one). 1. Endocrine profile)] Activite anti-androgene du R 2956". Journal de Pharmacologie (in French). 5 (4): 509–520. Retrieved 12 August 2016. R 2956 (17beta-hydroxy-2,2,17-trimethyl-estra-4,9,11-trien-3-one) was tested for antiandrogenic activity in rats (Dorfman test); in dogs; for androgenic activity in female rats (Hershberger); in male rats; for progestagenic activity in rabbits (Clauberg); for uterotrophic activity in mice (Rubin); and for antiestrogenic activity in mice (Dorfman). R 2956 significantly antagonized the hypertrophic effect of .05 mg testosterone propionate on rat seminal vesicles and ventral prostate in proportion to dose from .4-5 mg/day orally. In dogs R 2956 lowered prostate epithelial hyperplasia induced by androstanolone. R 2956 had no androgenic, estrogenic, progestational, or antiestrogenic activities and inhibited development of corpora lutea to an extent comparable with that of norethindrone.
  6. 1 2 3 James VH, Pasqualini JR (22 October 2013). Proceedings of the Fourth International Congress on Hormonal Steroids: Mexico City, September 1974. Elsevier Science. pp. 618, 620. ISBN   978-1-4831-4566-2. R-2956 [41-43], a dimethyl derivative of an extremely potent androgen, R 1881 [44], is a powerful testosterone antagonist with very low androgenic activity.
  7. Ostgaard K, Wibe E, Eik-Nes KB (August 1981). "Steroid responsiveness of the human cell line NHIK 3025". Acta Endocrinologica. 97 (4): 551–558. doi:10.1530/acta.0.0970551. PMID   7270009.
  8. Harms AF (1 January 1986). Innovative Approaches in Drug Research: Proceedings of the Third Noordwijkerhout Symposium on Medicinal Chemistry, Held in the Netherlands, September 3-6, 1985. Elsevier. ISBN   978-0-444-42606-2. At this stage, RU 2956 exerts a competitive effect about 4 times less marked than metribolone may be because the steric hindrance of the dimethyl group in position C-2 interferes with H-bond formation between the C-3 oxygen and the receptor protein, i.e., with the recognition step, and consequently, with the association rate.
  9. Eil C, Douglass EC, Rosenburg SM, Kano-Sueoka T (January 1981). "Receptor characteristics of the rat mammary carcinoma cell line 64-24". Cancer Research. 41 (1): 42–48. PMID   6256064.
  10. Raynaud JP, Bouton MM, Moguilewsky M, Ojasoo T, Philibert D, Beck G, et al. (January 1980). "Steroid hormone receptors and pharmacology". Journal of Steroid Biochemistry. 12: 143–157. doi:10.1016/0022-4731(80)90264-2. PMID   7421203.
  11. Ojasoo T, Raynaud JP (November 1978). "Unique steroid congeners for receptor studies". Cancer Research. 38 (11 Pt 2): 4186–4198. PMID   359134.
  12. Ojasoo T, Delettré J, Mornon JP, Turpin-VanDycke C, Raynaud JP (1987). "Towards the mapping of the progesterone and androgen receptors". Journal of Steroid Biochemistry. 27 (1–3): 255–269. doi:10.1016/0022-4731(87)90317-7. PMID   3695484.
  13. Raynaud JP, Ojasoo T, Bouton MM, Philibert D (1979). "Receptor Binding as a Tool in the Development of New Bioactive Steroids". In Ariens EJ (ed.). Drug Design. pp.  169–214. doi:10.1016/B978-0-12-060308-4.50010-X. ISBN   9780120603084.
  14. Kohtz AS, Frye CA (2012). "Dissociating behavioral, autonomic, and neuroendocrine effects of androgen steroids in animal models". Methods in Molecular Biology. Methods in Molecular Biology. 829: 397–431. doi:10.1007/978-1-61779-458-2_26. ISBN   978-1-61779-457-5. PMID   22231829. Administration of steroidal, blocking agents such as spironolactone, cyproterone acetate, or trimethyltrienolone, or nonsteroidal, such as flutamide, bicalutamide, blocking agents, can attain this result (169–171).
  15. 1 2 3 Brandes D (2 December 2012). Male Accessory Sex Organs: Structure and Function in Mammals. Elsevier. pp. 323–. ISBN   978-0-323-14666-1.
  16. Baulieu EE, Jung I (February 1970). "A prostatic cytosol receptor". Biochemical and Biophysical Research Communications. 38 (4): 599–606. doi:10.1016/0006-291X(70)90623-6. PMID   5443703.
  17. Bonne C, Raynaud J (1974). "Anti-androgenic Activity of R 2956 (17beta-hydroxy-2,2,17alpha-trimethyl-estra-4,9,11-trien-3-one). 2. Mechanism Of Action". Journal de Pharmacologie. 5 (4): 521–532.
  18. Inaba M, Inaba Y (14 March 2013). Androgenetic Alopecia: Modern Concepts of Pathogenesis and Treatment. Springer Science & Business Media. pp. 531–. ISBN   978-4-431-67038-4.
  19. Bratoeff E, Ramírez E, Murillo E, Flores G, Cabeza M (December 1999). "Steroidal antiandrogens and 5alpha-reductase inhibitors". Current Medicinal Chemistry. 6 (12): 1107–23. PMID   10519917. Several androstane derivatives have also demonstrated an antiandrogenic activity; 17a-methyl-B-nortestosterone 8 was prepared and tested in 1964 for antihormonal activity [43]. Within the next decade, several other androstane analogs were prepared and found to possess antiandrogenic activity [43, 44, 45, 46] including BOMT 9 "figure 2", R2956 10, SC9420 11, and oxendolone 12 "figure 3".
  20. Horsky J, Presl J (6 December 2012). Ovarian Function and its Disorders: Diagnosis and Therapy. Springer Science & Business Media. pp. 112–. ISBN   978-94-009-8195-9.
  21. William Andrew Publishing (22 October 2013). Pharmaceutical Manufacturing Encyclopedia (3rd ed.). Elsevier. pp. 2935–. ISBN   978-0-8155-1856-3.