Alternariol

Last updated
Alternariol
Alternariol.svg
Names
Preferred IUPAC name
3,7,9-Trihydroxy-1-methyl-6H-dibenzo[b,d]pyran-6-one
Other names
3,7,9-Trihydroxy-1-methyl-6H-benzo[c]chromen-6-one
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.164.145 OOjs UI icon edit-ltr-progressive.svg
KEGG
PubChem CID
UNII
  • InChI=1S/C14H10O5/c1-6-2-7(15)5-11-12(6)9-3-8(16)4-10(17)13(9)14(18)19-11/h2-5,15-17H,1H3 Yes check.svgY
    Key: CEBXXEKPIIDJHL-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C14H10O5/c1-6-2-7(15)5-11-12(6)9-3-8(16)4-10(17)13(9)14(18)19-11/h2-5,15-17H,1H3
    Key: CEBXXEKPIIDJHL-UHFFFAOYAX
  • CC1=CC(=CC2=C1C3=CC(=CC(=C3C(=O)O2)O)O)O
  • Cc1cc(cc2c1c3cc(cc(c3c(=O)o2)O)O)O
Properties
C14H10O5
Molar mass 258.229 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Alternariol is a toxic metabolite of Alternaria fungi. [1] It is an important contaminant in cereals and fruits. [2] Alternariol exhibits antifungal and phytotoxic activity. It is reported to inhibit cholinesterase enzymes. [3] It is also a mycoestrogen.

A 2017 in vitro assay study reported alternariol to be a full androgen agonist. [4]

Related Research Articles

<span class="mw-page-title-main">Dehydroepiandrosterone</span> Chemical compound

Dehydroepiandrosterone (DHEA), also known as androstenolone, is an endogenous steroid hormone precursor. It is one of the most abundant circulating steroids in humans. DHEA is produced in the adrenal glands, the gonads, and the brain. It functions as a metabolic intermediate in the biosynthesis of the androgen and estrogen sex steroids both in the gonads and in various other tissues. However, DHEA also has a variety of potential biological effects in its own right, binding to an array of nuclear and cell surface receptors, and acting as a neurosteroid and modulator of neurotrophic factor receptors.

<span class="mw-page-title-main">Antiandrogen</span> Class of pharmaceutical drugs

Antiandrogens, also known as androgen antagonists or testosterone blockers, are a class of drugs that prevent androgens like testosterone and dihydrotestosterone (DHT) from mediating their biological effects in the body. They act by blocking the androgen receptor (AR) and/or inhibiting or suppressing androgen production. They can be thought of as the functional opposites of AR agonists, for instance androgens and anabolic steroids (AAS) like testosterone, DHT, and nandrolone and selective androgen receptor modulators (SARMs) like enobosarm. Antiandrogens are one of three types of sex hormone antagonists, the others being antiestrogens and antiprogestogens.

A mycotoxin is a toxic secondary metabolite produced by fungi and is capable of causing disease and death in both humans and other animals. The term 'mycotoxin' is usually reserved for the toxic chemical products produced by fungi that readily colonize crops.

<span class="mw-page-title-main">Androgen receptor</span> Mammalian protein found in humans

The androgen receptor (AR), also known as NR3C4, is a type of nuclear receptor that is activated by binding any of the androgenic hormones, including testosterone and dihydrotestosterone, in the cytoplasm and then translocating into the nucleus. The androgen receptor is most closely related to the progesterone receptor, and progestins in higher dosages can block the androgen receptor.

<span class="mw-page-title-main">Flutamide</span> Chemical compound

Flutamide, sold under the brand name Eulexin among others, is a nonsteroidal antiandrogen (NSAA) which is used primarily to treat prostate cancer. It is also used in the treatment of androgen-dependent conditions like acne, excessive hair growth, and high androgen levels in women. It is taken by mouth, usually three times per day.

<span class="mw-page-title-main">Tibolone</span> Chemical compound

Tibolone, sold under the brand name Livial among others, is a medication which is used in menopausal hormone therapy and in the treatment of postmenopausal osteoporosis and endometriosis. The medication is available alone and is not formulated or used in combination with other medications. It is taken by mouth.

<span class="mw-page-title-main">Trestolone</span> Chemical compound

Trestolone, also known as 7α-methyl-19-nortestosterone (MENT), is an experimental androgen/anabolic steroid (AAS) and progestogen medication which has been under development for potential use as a form of hormonal birth control for men and in androgen replacement therapy for low testosterone levels in men but has never been marketed for medical use. It is given as an implant that is placed into fat. As trestolone acetate, an androgen ester and prodrug of trestolone, the medication can also be given by injection into muscle.

<span class="mw-page-title-main">Selective androgen receptor modulator</span> Class of pharmaceutical drugs

Selective androgen receptor modulators (SARMs) are a class of drugs that selectively activate the androgen receptor in specific tissues, promoting muscle and bone growth while having less effect on male reproductive tissues like the prostate gland.

<span class="mw-page-title-main">TRPM8</span> Protein-coding gene in the species Homo sapiens

Transient receptor potential cation channel subfamily M (melastatin) member 8 (TRPM8), also known as the cold and menthol receptor 1 (CMR1), is a protein that in humans is encoded by the TRPM8 gene. The TRPM8 channel is the primary molecular transducer of cold somatosensation in humans. In addition, mints can desensitize a region through the activation of TRPM8 receptors.

<span class="mw-page-title-main">Metabotropic glutamate receptor 4</span> Mammalian protein found in humans

Metabotropic glutamate receptor 4 is a protein that in humans is encoded by the GRM4 gene.

<span class="mw-page-title-main">LGD-2226</span> Chemical compound

LGD-2226 is an investigational selective androgen receptor modulator (SARM), which is being developed for treatment of muscle wasting and osteoporosis.

<span class="mw-page-title-main">Enobosarm</span> Investigational selective androgen receptor modulator

Enobosarm, also formerly known as ostarine and by the developmental code names GTx-024, MK-2866, and S-22, is a selective androgen receptor modulator (SARM) which is under development for the treatment of androgen receptor-positive breast cancer in women and for improvement of body composition in people taking GLP-1 receptor agonists like semaglutide. It was also under development for a variety of other indications, including treatment of cachexia, Duchenne muscular dystrophy, muscle atrophy or sarcopenia, and stress urinary incontinence, but development for all other uses has been discontinued. Enobosarm was evaluated for the treatment of muscle wasting related to cancer in late-stage clinical trials, and the drug improved lean body mass in these trials, but it was not effective in improving muscle strength. As a result, enobosarm was not approved and development for this use was terminated. Enobosarm is taken by mouth.

<span class="mw-page-title-main">Hydroxyflutamide</span> Chemical compound

Hydroxyflutamide (HF, OHF) (developmental code name SCH-16423), or 2-hydroxyflutamide, is a nonsteroidal antiandrogen (NSAA) and the major active metabolite of flutamide, which is considered to be a prodrug of hydroxyflutamide as the active form. It has been reported to possess an IC50 of 700 nM for the androgen receptor (AR), which is about 4-fold less than that of bicalutamide.

<span class="mw-page-title-main">Vosilasarm</span> Chemical compound

Vosilasarm, also known by the development codes RAD140 and EP0062 and by the black-market name Testolone or Testalone, is a selective androgen receptor modulator (SARM) which is under development for the treatment of hormone-sensitive breast cancer. It is specifically under development for the treatment of androgen receptor-positive, estrogen receptor-negative, HER2-negative advanced breast cancer. Vosilasarm was also previously under development for the treatment of sarcopenia, osteoporosis, and weight loss due to cancer cachexia, but development for these indications was discontinued. The drug is taken by mouth.

<span class="mw-page-title-main">LG121071</span> Chemical compound

LG121071 is a selective androgen receptor modulator (SARM) developed by Ligand Pharmaceuticals that was first described in 1999 and was the first orally active nonsteroidal androgen to be discovered. It is a tricyclic quinolone derivative, structurally distinct from other nonsteroidal AR agonists like andarine and enobosarm (ostarine). The drug acts as a high-affinity full agonist of the androgen receptor (AR), with a potency and efficacy that is said to be equivalent to that of dihydrotestosterone (DHT). Unlike testosterone, but similarly to DHT, LG121071 and other nonsteroidal androgens cannot be potentiated by 5α-reductase in androgenic tissues, and for this reason, show tissue-selective androgenic effects. In accordance, they are said to possess full anabolic activity with reduced androgenic activity, similarly to anabolic-androgenic steroids.

<span class="mw-page-title-main">Cl-4AS-1</span> Chemical compound

Cl-4AS-1 is a dual anabolic–androgenic steroid (AAS) and 5α-reductase inhibitor. It is a potent and selective full agonist of the androgen receptor (IC50 = 12 nM) and inhibitor of 5α-reductase types I and II (IC50 = 6 and 10 nM, respectively). Structurally, Cl-4AS-1 is a 4-azasteroid.

<span class="mw-page-title-main">TFM-4AS-1</span> Dual selective androgen receptor modulator

TFM-4AS-1 is a dual selective androgen receptor modulator (SARM) and 5α-reductase inhibitor. It is a potent and selective partial agonist (Emax = 55%) of the androgen receptor (IC50 = 30 nM) and inhibitor of 5α-reductase types I and II (IC50 = 2 and 3 nM, respectively). TFM-4AS-1 shows tissue-selective androgenic effects; it promotes the accumulation of bone and muscle mass and has reduced effects in reproductive tissues and sebaceous glands. In an animal study, TFM-4AS-1 stimulated sebaceous gland formation only 31% as much as dihydrotestosterone (DHT) at doses that were as anabolic or more so than DHT. In addition, TFM-4AS-1 only weakly promoted growth of the prostate gland and it partially antagonized the actions of DHT in the seminal vesicles and endogenous androgens in the prostate gland. Structurally, TFM-4AS-1 is a 4-azasteroid. A structurally related and more advanced version of TFM-4AS-1, MK-0773, was developed and pursued for potential pharmaceutical use.

<span class="mw-page-title-main">YK-11</span> Chemical compound

YK-11 is a synthetic steroidal selective androgen receptor modulator (SARM). It is a gene-selective partial agonist of the androgen receptor (AR) and does not induce the physical interaction between the NTD/AF1 and LBD/AF2, which is required for full transactivation of the AR. The drug has anabolic activity in vitro in C2C12 myoblasts and shows greater potency than dihydrotestosterone (DHT) in this regard. It has been investigated as a potential treatment for sepsis-induced muscle wasting in animal studies.

<span class="mw-page-title-main">5α-Dihydroethisterone</span> Chemical compound

5α-Dihydroethisterone is an active metabolite of the formerly clinically used but now-discontinued progestin ethisterone and the experimental and never-marketed hormonal antineoplastic agent ethynylandrostanediol (HE-3235). Its formation from its parent drugs is catalyzed by 5α-reductase in tissues that express the enzyme in high amounts like the liver, skin, hair follicles, and prostate gland. 5α-DHET has significant affinity for steroid hormone receptors and may contribute importantly to the activities of its parent drugs.

<span class="mw-page-title-main">RU-56187</span> Chemical compound

RU-56187 is a nonsteroidal antiandrogen which was never marketed. It shows 92% of the affinity of testosterone for the androgen receptor and negligible affinity for other steroid hormone receptors. The medication is a silent antagonist of the androgen receptor. RU-56187 is 3- to 10-fold more potent as an antiandrogen than bicalutamide or nilutamide in animals. Both RU-56187 and RU-58841 appear to be prodrugs of cyanonilutamide (RU-56279) in vivo in animals.

References

  1. Davis VM, Stack ME (1 October 1994). "Evaluation of alternariol and alternariol methyl ether for mutagenic activity in Salmonella typhimurium". Appl. Environ. Microbiol. 60 (10): 3901–2. Bibcode:1994ApEnM..60.3901D. doi:10.1128/AEM.60.10.3901-3902.1994. PMC   201908 . PMID   7986060.
  2. Brugger EM, Wagner J, Schumacher DM, et al. (2006). "Mutagenicity of the mycotoxin alternariol in cultured mammalian cells". Toxicol. Lett. 164 (3): 221–30. doi:10.1016/j.toxlet.2006.01.001. PMID   16464542.
  3. Alternariol product page from Fermentek
  4. Stypuła-Trębas S, Minta M, Radko L, Jedziniak P, Posyniak A (2017). "Nonsteroidal mycotoxin alternariol is a full androgen agonist in the yeast reporter androgen bioassay". Environmental Toxicology and Pharmacology. 55: 208–211. doi:10.1016/j.etap.2017.08.036. ISSN   1382-6689. PMID   28910742.