Lava dome

Last updated
Rhyolitic lava dome of Chaiten Volcano during its 2008-2010 eruption Volcan Chaiten-Sam Beebe-Ecotrust.jpg
Rhyolitic lava dome of Chaitén Volcano during its 2008–2010 eruption
One of the Inyo Craters, an example of a rhyolite dome Mono Crater closeup-1000px.jpeg
One of the Inyo Craters, an example of a rhyolite dome
Nea Kameni seen from Thera, Santorini Nea Kameni.jpg
Nea Kameni seen from Thera, Santorini

In volcanology, a lava dome is a circular, mound-shaped protrusion resulting from the slow extrusion of viscous lava from a volcano. Dome-building eruptions are common, particularly in convergent plate boundary settings. [1] Around 6% of eruptions on Earth form lava domes. [1] The geochemistry of lava domes can vary from basalt (e.g. Semeru, 1946) to rhyolite (e.g. Chaiten, 2010) although the majority are of intermediate composition (such as Santiaguito, dacite-andesite, present day) [2] The characteristic dome shape is attributed to high viscosity that prevents the lava from flowing very far. This high viscosity can be obtained in two ways: by high levels of silica in the magma, or by degassing of fluid magma. Since viscous basaltic and andesitic domes weather fast and easily break apart by further input of fluid lava, most of the preserved domes have high silica content and consist of rhyolite or dacite.

Contents

Existence of lava domes has been suggested for some domed structures on the Moon, Venus, and Mars, [1] e.g. the Martian surface in the western part of Arcadia Planitia and within Terra Sirenum. [3] [4]

Dome dynamics

Lava domes in the crater of Mount St. Helens MSH06 aerial crater from north high angle 09-12-06.jpg
Lava domes in the crater of Mount St. Helens

Lava domes evolve unpredictably, due to non-linear dynamics caused by crystallization and outgassing of the highly viscous lava in the dome's conduit. [5] Domes undergo various processes such as growth, collapse, solidification and erosion. [6]

Lava domes grow by endogenic dome growth or exogenic dome growth. The former implies the enlargement of a lava dome due to the influx of magma into the dome interior, and the latter refers to discrete lobes of lava emplaced upon the surface of the dome. [2] It is the high viscosity of the lava that prevents it from flowing far from the vent from which it extrudes, creating a dome-like shape of sticky lava that then cools slowly in-situ. [7] Spines and lava flows are common extrusive products of lava domes. [1] Domes may reach heights of several hundred meters, and can grow slowly and steadily for months (e.g. Unzen volcano), years (e.g. Soufrière Hills volcano), or even centuries (e.g. Mount Merapi volcano). The sides of these structures are composed of unstable rock debris. Due to the intermittent buildup of gas pressure, erupting domes can often experience episodes of explosive eruption over time. [8] If part of a lava dome collapses and exposes pressurized magma, pyroclastic flows can be produced. [9] Other hazards associated with lava domes are the destruction of property from lava flows, forest fires, and lahars triggered from re-mobilization of loose ash and debris. Lava domes are one of the principal structural features of many stratovolcanoes worldwide. Lava domes are prone to unusually dangerous explosions since they can contain rhyolitic silica-rich lava.

Characteristics of lava dome eruptions include shallow, long-period and hybrid seismicity, which is attributed to excess fluid pressures in the contributing vent chamber. Other characteristics of lava domes include their hemispherical dome shape, cycles of dome growth over long periods, and sudden onsets of violent explosive activity. [10] The average rate of dome growth may be used as a rough indicator of magma supply, but it shows no systematic relationship to the timing or characteristics of lava dome explosions. [11]

Gravitational collapse of a lava dome can produce a block and ash flow. [12]

Cryptodomes

The bulging cryptodome of Mt. St. Helens on April 27, 1980 MSH80 bulge on north side 04-27-80.jpg
The bulging cryptodome of Mt. St. Helens on April 27, 1980

A cryptodome (from the Greek κρυπτός, kryptos, "hidden, secret") is a dome-shaped structure created by accumulation of viscous magma at a shallow depth. [13] One example of a cryptodome was in the May 1980 eruption of Mount St. Helens, where the explosive eruption began after a landslide caused the side of the volcano to collapse, leading to explosive decompression of the subterranean cryptodome. [14]

Lava spine/Lava spire

Soufriere Hills lava spine before the 1997 eruption Soufriere Hills Lava Dome Spire1.jpg
Soufrière Hills lava spine before the 1997 eruption

A lava spine or lava spire is a growth that can form on the top of a lava dome. A lava spine can increase the instability of the underlying lava dome. A recent example of a lava spine is the spine formed in 1997 at the Soufrière Hills Volcano on Montserrat.

Lava coulées

Chao dacite coulee flow-domes (left center), northern Chile, viewed from Landsat 8 Chao dacite domes.jpg
Chao dacite coulée flow-domes (left center), northern Chile, viewed from Landsat 8

Coulées (or coulees) are lava domes that have experienced some flow away from their original position, thus resembling both lava domes and lava flows. [2]

The world's largest known dacite flow is the Chao dacite dome complex, a huge coulée flow-dome between two volcanoes in northern Chile. This flow is over 14 kilometres (8.7 mi) long, has obvious flow features like pressure ridges, and a flow front 400 metres (1,300 ft) tall (the dark scalloped line at lower left). [15] There is another prominent coulée flow on the flank of Llullaillaco volcano, in Argentina, [16] and other examples in the Andes.

Examples of lava domes

Lava domes
Name of lava domeCountryVolcanic areaCompositionLast eruption
or growth episode
Chaitén lava dome Chile Southern Volcanic Zone Rhyolite 2009
Ciomadul lava domes Romania Carpathians Dacite Pleistocene
Cordón Caulle lava domesChileSouthern Volcanic Zone Rhyodacite to Rhyolite Holocene
Galeras lava dome Colombia Northern Volcanic Zone Unknown2010
Katla lava dome Iceland Iceland hotspot Rhyolite1999 onwards [17] [ better source needed ]
Lassen Peak United States Cascade Volcanic Arc Dacite1917
Black Butte (Siskiyou County, California) United States Cascade Volcanic Arc Dacite9500 BP [18]
Bridge River Vent lava domeCanadaCascade Volcanic ArcDaciteca. 300 BC
La Soufrière lava dome Saint Vincent and the Grenadines Lesser Antilles Volcanic Arc 2021 [19]
Mount Merapi lava dome Indonesia Sunda Arc Unknown2010
Nea Kameni Greece South Aegean Volcanic Arc Dacite1950
Novarupta lava domeUnited States Aleutian Arc Rhyolite1912
Nevados de Chillán lava domesChileSouthern Volcanic ZoneDacite1986
Puy de Dôme France Chaîne des Puys Trachyte c.5760 BC
Santa María lava dome Guatemala Central America Volcanic Arc Dacite2009
Sollipulli lava domeChileSouthern Volcanic Zone Andesite to Dacite1240 ± 50 years
Soufrière Hills lava dome Montserrat Lesser Antilles Andesite2009
Mount St. Helens lava domesUnited StatesCascade Volcanic ArcDacite2008
Torfajökull lava domeIceland Iceland hotspot Rhyolite1477
Tata Sabaya lava domes Bolivia Andes Unknown~ Holocene
Tate-iwaJapan Japan Arc Dacite Miocene [20]
Tatun lava domes Taiwan Andesite648 [21]
Valles lava domes United States Jemez Mountains Rhyolite50,000-60,000 BP
Wizard Island lava domeUnited StatesCascade Volcanic ArcRhyodacite [22] 2850 BC

Related Research Articles

<span class="mw-page-title-main">Volcano</span> Rupture in a planets crust where material escapes

A volcano is a rupture in the crust of a planetary-mass object, such as Earth, that allows hot lava, volcanic ash, and gases to escape from a magma chamber below the surface.

<span class="mw-page-title-main">Stratovolcano</span> Type of conical volcano composed of layers of lava and tephra

A stratovolcano, also known as a composite volcano, is a conical volcano built up by many layers (strata) of hardened lava and tephra. Unlike shield volcanoes, stratovolcanoes are characterized by a steep profile with a summit crater and periodic intervals of explosive eruptions and effusive eruptions, although some have collapsed summit craters called calderas. The lava flowing from stratovolcanoes typically cools and solidifies before spreading far, due to high viscosity. The magma forming this lava is often felsic, having high to intermediate levels of silica, with lesser amounts of less viscous mafic magma. Extensive felsic lava flows are uncommon, but have traveled as far as 15 km (9 mi).

<span class="mw-page-title-main">Mono–Inyo Craters</span> Volcanic chain in eastern California, United States

The Mono–Inyo Craters are a volcanic chain of craters, domes and lava flows in Mono County, Eastern California. The chain stretches 25 miles (40 km) from the northwest shore of Mono Lake to the south of Mammoth Mountain. The Mono Lake Volcanic Field forms the northernmost part of the chain and consists of two volcanic islands in the lake and one cinder cone volcano on its northwest shore. Most of the Mono Craters, which make up the bulk of the northern part of the Mono–Inyo chain, are phreatic volcanoes that have since been either plugged or over-topped by rhyolite domes and lava flows. The Inyo volcanic chain form much of the southern part of the chain and consist of phreatic explosion pits, and rhyolitic lava flows and domes. The southernmost part of the chain consists of fumaroles and explosion pits on Mammoth Mountain and a set of cinder cones south of the mountain; the latter are called the Red Cones.

<span class="mw-page-title-main">Geology of the Lassen volcanic area</span> Geology of a U.S. national park in California

The Lassen volcanic area presents a geological record of sedimentation and volcanic activity in and around Lassen Volcanic National Park in Northern California, U.S. The park is located in the southernmost part of the Cascade Mountain Range in the Pacific Northwest region of the United States. Pacific Oceanic tectonic plates have plunged below the North American Plate in this part of North America for hundreds of millions of years. Heat and molten rock from these subducting plates has fed scores of volcanoes in California, Oregon, Washington and British Columbia over at least the past 30 million years, including these in the Lassen volcanic areas.

<span class="mw-page-title-main">Santa María (volcano)</span> Active volcano in Quetzaltenango Department, Guatemala

Santa María Volcano is a large active volcano in the western highlands of Guatemala, in the Quetzaltenango Department near the city of Quetzaltenango. It is part of the mountain range of the Sierra Madre.

<span class="mw-page-title-main">Soufrière Hills</span> Volcano on Montserrat in the Caribbean

The Soufrière Hills are an active, complex stratovolcano with many lava domes forming its summit on the Caribbean island of Montserrat. After a long period of dormancy, the Soufrière Hills volcano became active in 1995 and has continued to erupt ever since. Its eruptions have rendered more than half of Montserrat uninhabitable, destroying the capital city, Plymouth, and causing widespread evacuations: about two-thirds of the population have left the island. Chances Peak in the Soufrière Hills was the highest summit on Montserrat until the mid-1990s, but it has since been eclipsed by various rising and falling volcanic domes during the recent volcanic activity.

<span class="mw-page-title-main">Strombolian eruption</span> Type of volcanic eruption with relatively mild explosive intensity

In volcanology, a Strombolian eruption is a type of volcanic eruption with relatively mild blasts, typically having a Volcanic Explosivity Index of 1 or 2. Strombolian eruptions consist of ejection of incandescent cinders, lapilli, and volcanic bombs, to altitudes of tens to a few hundreds of metres. The eruptions are small to medium in volume, with sporadic violence. This type of eruption is named for the Italian volcano Stromboli.

<span class="mw-page-title-main">Vulcanian eruption</span> Volcanic eruption with dense ash clouds

A Vulcanian eruption is a type of volcanic eruption characterized by a dense cloud of ash-laden gas exploding from the crater and rising high above the peak. They usually commence with phreatomagmatic eruptions which can be extremely noisy due to the rising magma heating water in the ground. This is usually followed by the explosive clearing of the vent and the eruption column is dirty grey to black as old weathered rocks are blasted out of the vent. As the vent clears, further ash clouds become grey-white and creamy in colour, with convolutions of the ash similar to those of Plinian eruptions.

<span class="mw-page-title-main">La Garita Caldera</span> Large caldera in the state of Colorado, U.S.

La Garita Caldera is a large caldera and extinct supervolcano in the San Juan volcanic field in the San Juan Mountains around the town of Creede in southwestern Colorado, United States. It is west of La Garita, Colorado. The eruption that created the La Garita Caldera is among the largest known volcanic eruptions in Earth's history, as well as being one of the most powerful known supervolcanic events.

<span class="mw-page-title-main">Effusive eruption</span> Type of volcanic eruption characterized by steady lava flow

An effusive eruption is a type of volcanic eruption in which lava steadily flows out of a volcano onto the ground.

<span class="mw-page-title-main">Volcanic gas</span> Gases given off by active volcanoes

Volcanic gases are gases given off by active volcanoes. These include gases trapped in cavities (vesicles) in volcanic rocks, dissolved or dissociated gases in magma and lava, or gases emanating from lava, from volcanic craters or vents. Volcanic gases can also be emitted through groundwater heated by volcanic action.

<span class="mw-page-title-main">Peléan eruption</span> Pyroclastic volcanic eruption due to a viscous siliceous magma

Peléan eruptions are a type of volcanic eruption. They can occur when viscous magma, typically of rhyolitic or andesitic type, is involved, and share some similarities with Vulcanian eruptions. The most important characteristic of a Peléan eruption is the presence of a glowing avalanche of hot volcanic ash, called a pyroclastic flow. Formation of lava domes is another characteristic. Short flows of ash or creation of pumice cones may be observed as well.

<span class="mw-page-title-main">Lascar (volcano)</span> A stratovolcano within the Central Volcanic Zone of the Andes

Lascar is a stratovolcano in Chile within the Central Volcanic Zone of the Andes, a volcanic arc that spans Peru, Bolivia, Argentina and Chile. It is the most active volcano in the region, with records of eruptions going back to 1848. It is composed of two separate cones with several summit craters. The westernmost crater of the eastern cone is presently active. Volcanic activity is characterized by constant release of volcanic gas and occasional vulcanian eruptions.

<span class="mw-page-title-main">Types of volcanic eruptions</span> Overview of different types of volcanic eruptions

Several types of volcanic eruptions—during which material is expelled from a volcanic vent or fissure—have been distinguished by volcanologists. These are often named after famous volcanoes where that type of behavior has been observed. Some volcanoes may exhibit only one characteristic type of eruption during a period of activity, while others may display an entire sequence of types all in one eruptive series.

<span class="mw-page-title-main">Ollagüe</span> Stratovolcano in Bolivia and Chile

Ollagüe or Ullawi is a massive andesite stratovolcano in the Andes on the border between Bolivia and Chile, within the Antofagasta Region of Chile and the Potosi Department of Bolivia. Part of the Central Volcanic Zone of the Andes, its highest summit is 5,868 metres (19,252 ft) above sea level and features a summit crater that opens to the south. The western rim of the summit crater is formed by a compound of lava domes, the youngest of which features a vigorous fumarole that is visible from afar.

<span class="mw-page-title-main">Phreatomagmatic eruption</span> Volcanic eruption involving both steam and magma

Phreatomagmatic eruptions are volcanic eruptions resulting from interaction between magma and water. They differ from exclusively magmatic eruptions and phreatic eruptions. Unlike phreatic eruptions, the products of phreatomagmatic eruptions contain juvenile (magmatic) clasts. It is common for a large explosive eruption to have magmatic and phreatomagmatic components.

<span class="mw-page-title-main">Taapaca</span> Volcano in Chile

Taapaca is a Holocene volcanic complex in northern Chile's Arica y Parinacota Region. Located in the Chilean Andes, it is part of the Central Volcanic Zone of the Andean Volcanic Belt, one of four distinct volcanic chains in South America. The town of Putre lies at the southwestern foot of the volcano.

<span class="mw-page-title-main">Silverthrone Caldera</span> Caldera in British Columbia, Canada

The Silverthrone Caldera is a potentially active caldera complex in southwestern British Columbia, Canada, located over 350 kilometres (220 mi) northwest of the city of Vancouver and about 50 kilometres (31 mi) west of Mount Waddington in the Pacific Ranges of the Coast Mountains. The caldera is one of the largest of the few calderas in western Canada, measuring about 30 kilometres (19 mi) long (north-south) and 20 kilometres (12 mi) wide (east-west). Mount Silverthrone, an eroded lava dome on the caldera's northern flank that is 2,864 metres (9,396 ft) high, may be the highest volcano in Canada.

<span class="mw-page-title-main">Lava</span> Molten rock expelled by a volcano during an eruption

Lava is molten or partially molten rock (magma) that has been expelled from the interior of a terrestrial planet or a moon onto its surface. Lava may be erupted at a volcano or through a fracture in the crust, on land or underwater, usually at temperatures from 800 to 1,200 °C. The volcanic rock resulting from subsequent cooling is also often called lava.

<span class="mw-page-title-main">Ticsani</span> Volcano in Peru

Ticsani is a volcano in Peru northwest of Moquegua and consists of two volcanoes that form a complex. "Old Ticsani" is a compound volcano that underwent a large collapse in the past and shed 15–30 cubic kilometres (3.6–7.2 cu mi) of mass down the Rio Tambo valley. Today an arcuate ridge remains of this edifice. "Modern Ticsani" is a complex of three lava domes which were emplaced during the Holocene. Two large eruptions took place during the Holocene, producing the so-called "Grey Ticsani" and "Brown Ticsani" deposits; the last eruption occurred after the 1600 eruption of neighbouring Huaynaputina. The volcano is seismically active and features active hot springs and fumaroles; since 2015 the volcano is monitored by the Peruvian government.

References

  1. 1 2 3 4 Calder, Eliza S.; Lavallée, Yan; Kendrick, Jackie E.; Bernstein, Marc (2015). The Encyclopedia of Volcanoes. Elsevier. pp. 343–362. doi:10.1016/b978-0-12-385938-9.00018-3. ISBN   9780123859389.
  2. 1 2 3 Fink, Jonathan H.; Anderson, Steven W. (2001). "Lava Domes and Coulees". In Sigursson, Haraldur (ed.). Encyclopedia of Volcanoes. Academic Press. pp. 307–19.
  3. Rampey, Michael L.; Milam, Keith A.; McSween, Harry Y.; Moersch, Jeffrey E.; Christensen, Philip R. (28 June 2007). "Identity and emplacement of domical structures in the western Arcadia Planitia, Mars". Journal of Geophysical Research. 112 (E6): E06011. Bibcode:2007JGRE..112.6011R. doi: 10.1029/2006JE002750 .
  4. Brož, Petr; Hauber, Ernst; Platz, Thomas; Balme, Matt (April 2015). "Evidence for Amazonian highly viscous lavas in the southern highlands on Mars". Earth and Planetary Science Letters. 415: 200–212. Bibcode:2015E&PSL.415..200B. doi:10.1016/j.epsl.2015.01.033.
  5. Melnik, O; Sparks, R. S. J. (4 November 1999), "Nonlinear dynamics of lava dome extrusion" (PDF), Nature, 402 (6757): 37–41, Bibcode:1999Natur.402...37M, doi:10.1038/46950, S2CID   4426887
  6. Darmawan, Herlan; Walter, Thomas R.; Troll, Valentin R.; Budi-Santoso, Agus (2018-12-12). "Structural weakening of the Merapi dome identified by drone photogrammetry after the 2010 eruption". Natural Hazards and Earth System Sciences. 18 (12): 3267–3281. Bibcode:2018NHESS..18.3267D. doi: 10.5194/nhess-18-3267-2018 . ISSN   1561-8633.
  7. Darmawan, Herlan; Troll, Valentin R.; Walter, Thomas R.; Deegan, Frances M.; Geiger, Harri; Heap, Michael J.; Seraphine, Nadhirah; Harris, Chris; Humaida, Hanik; Müller, Daniel (2022-02-25). "Hidden mechanical weaknesses within lava domes provided by buried high-porosity hydrothermal alteration zones". Scientific Reports. 12 (1): 3202. Bibcode:2022NatSR..12.3202D. doi:10.1038/s41598-022-06765-9. ISSN   2045-2322. PMC   8881499 . PMID   35217684.
  8. Heap, Michael J.; Troll, Valentin R.; Kushnir, Alexandra R. L.; Gilg, H. Albert; Collinson, Amy S. D.; Deegan, Frances M.; Darmawan, Herlan; Seraphine, Nadhirah; Neuberg, Juergen; Walter, Thomas R. (2019-11-07). "Hydrothermal alteration of andesitic lava domes can lead to explosive volcanic behaviour". Nature Communications. 10 (1): 5063. Bibcode:2019NatCo..10.5063H. doi: 10.1038/s41467-019-13102-8 . ISSN   2041-1723. PMC   6838104 . PMID   31700076.
  9. Parfitt, E.A.; Wilson, L (2008), Fundamentals of Physical Volcanology, Massachusetts: Blackwell Publishing, p. 256
  10. Sparks, R.S.J. (August 1997), "Causes and consequences of pressurisation in lava dome eruptions", Earth and Planetary Science Letters, 150 (3–4): 177–189, Bibcode:1997E&PSL.150..177S, doi:10.1016/S0012-821X(97)00109-X
  11. Newhall, C.G.; Melson., W.G. (September 1983), "Explosive activity associated with the growth of volcanic domes", Journal of Volcanology and Geothermal Research, 17 (1–4): 111–131, Bibcode:1983JVGR...17..111N, doi:10.1016/0377-0273(83)90064-1
  12. Cole, Paul D.; Neri, Augusto; Baxter, Peter J. (2015). "Chapter 54 – Hazards from Pyroclastic Density Currents". In Sigurdsson, Haraldur (ed.). Encyclopedia of Volcanoes (2nd ed.). Amsterdam: Academic Press. pp. 943–956. doi:10.1016/B978-0-12-385938-9.00037-7. ISBN   978-0-12-385938-9.
  13. "USGS: Volcano Hazards Program Glossary - Cryptodome". volcanoes.usgs.gov. Retrieved 2018-06-23.
  14. "USGS: Volcano Hazards Program CVO Mount St. Helens". volcanoes.usgs.gov. Retrieved 2018-06-23.
  15. Chao dacite dome complex at NASA Earth Observatory
  16. Coulées! by Erik Klemetti, an assistant professor of Geosciences at Denison University.
  17. Eyjafjallajökull and Katla: restless neighbours
  18. "Shasta". Volcano World. Oregon State University. 2000. Retrieved 30 April 2020.
  19. "Soufrière St. Vincent volcano (West Indies, St. Vincent): twice length and volume of new lava dome since last update". www.volcanodiscovery.com. Retrieved 2021-04-08.
  20. Goto, Yoshihiko; Tsuchiya, Nobutaka (July 2004). "Morphology and growth style of a Miocene submarine dacite lava dome at Atsumi, northeast Japan". Journal of Volcanology and Geothermal Research. 134 (4): 255–275. Bibcode:2004JVGR..134..255G. doi:10.1016/j.jvolgeores.2004.03.015.
  21. "Tatun Volcanic Group". Global Volcanism Program, Smithsonian Institution. 2023-10-11. Retrieved 2023-11-27.
  22. Map of Post-Caldera Volcanism and Crater Lake Archived 2020-08-04 at the Wayback Machine USGS Cascades Volcano Observatory. Retrieved 2014-01-31.