N6946-BH1

Last updated
N6946-BH1
Giant star N6946-BH1 before and after it vanished out of sight by imploding to form a black hole.jpg
Pair of visible-light and near-infrared photos from NASA's Hubble Space Telescope showing N6946-BH1 before and after it vanished from sight
Observation data
Epoch J2000.0       Equinox J2000.0
Constellation Cygnus
Right ascension 20h 35m 27.56s [1]
Declination +60° 08 08.3 [1]
Apparent magnitude  (V)18.17 (max) [2]
Characteristics
Variable type suspected failed supernova [2]
Astrometry
Distance 5,960,000 [1]   pc
Details
Mass 25 [1]   M
Radius 1,216 [lower-alpha 1] –2,720 [lower-alpha 2]   R
Luminosity 200,000–~1,000,000 [1]   L
Temperature 3,500 [1]   K
Database references
SIMBAD data

N6946-BH1 is a disappearing supergiant star and failed supernova candidate formerly seen in the galaxy NGC 6946, on the northern border of the constellation of Cygnus. The star, either a red supergiant [1] or a yellow hypergiant, [3] was 25 times the mass of the Sun, and was 20 million light years distant from Earth. In March through to May 2009 its bolometric luminosity increased to at least a million solar luminosities, but by 2015 it had disappeared from optical view. In the mid and near infrared an object is still visible, however, it is fading away with a brightness proportional to t−4/3. The brightening was insufficient to be a supernova; [1] the process that created the outburst is still uncertain.

Contents

The star's coordinates were at RA 20h 35m 27.56s and Dec +60° 08 08.3. The brightness of the star, given by its apparent magnitude in different colour bands on 2 July 2005 is given by R = 21, V = 22, B = 23, U = 24. [1] Prior to the optical outburst the star was about 100,000 times as bright as the Sun. After the outburst it was invisible in the visual band and has declined to 5000 times as bright as the Sun in infrared radiation. [1]

N6946-BH1 failed supernova (artist's impression) N6946-BH1 failed supernova (artist's impression).jpg
N6946-BH1 failed supernova (artist's impression)

One hypothesis is that of the failed supernova. In this scenario, the core of the star collapsed to form a black hole. The collapsing matter formed a burst of neutrinos that lowered the total mass of the star by a fraction of a percent. This caused a shock wave that blasted out the star's envelope to make it brighter. [4] N6946-BH1 has supplied evidence contrary to the conventional idea that black holes are usually formed after a supernova, suggesting instead that a star may bypass this eventuality and yet collapse into a black hole. [5]

Observed type II supernovae do not originate from stars with initial masses greater than about 18  M, and the rate of large star formation appears to exceed the rate of supernovae. The expectation is that something else is happening to these extra large stars. Failed supernovae and black hole formation is one proposed explanation. [1] If this event indeed reflected the formation of a black hole, it is the first time that black hole formation has been observed. [6]

Observations from the James Webb Space Telescope show that all observations before it were a combination of at least three objects. The data the instrument collected matches that of a merger of two stars; however, the failed supernova hypothesis cannot be ruled out. [7]

Notes

  1. Applying the Stefan-Boltzmann Law with a nominal solar effective temperature of 5,772  K:
  2. Applying the Stefan-Boltzmann Law with a nominal solar effective temperature of 5,772  K:

Related Research Articles

<span class="mw-page-title-main">Supernova</span> Explosion of a star at its end of life

A supernova is a powerful and luminous explosion of a star. A supernova occurs during the last evolutionary stages of a massive star, or when a white dwarf is triggered into runaway nuclear fusion. The original object, called the progenitor, either collapses to a neutron star or black hole, or is completely destroyed to form a diffuse nebula. The peak optical luminosity of a supernova can be comparable to that of an entire galaxy before fading over several weeks or months.

<span class="mw-page-title-main">Blue supergiant</span> Hot, luminous star with a spectral type of B9 or earlier

A blue supergiant (BSG) is a hot, luminous star, often referred to as an OB supergiant. They have luminosity class I and spectral class B9 or earlier, although sometimes A-class supergiants are also deemed blue supergiants.

<span class="mw-page-title-main">Stellar black hole</span> Black hole formed by a collapsed star

A stellar black hole is a black hole formed by the gravitational collapse of a star. They have masses ranging from about 5 to several tens of solar masses. They are the remnants of supernova explosions, which may be observed as a type of gamma ray burst. These black holes are also referred to as collapsars.

<span class="mw-page-title-main">NGC 6946</span> Galaxy in the constellations Cepheus & Cygnus

NGC 6946, sometimes referred to as the Fireworks Galaxy, is a face-on intermediate spiral galaxy with a small bright nucleus, whose location in the sky straddles the boundary between the northern constellations of Cepheus and Cygnus. Its distance from Earth is about 25.2 million light-years or 7.72 megaparsecs, similar to the distance of M101 in the constellation Ursa Major. Both were once considered to be part of the Local Group, but are now known to be among the dozen bright spiral galaxies near the Milky Way but beyond the confines of the Local Group. NGC 6946 lies within the Virgo Supercluster.

<span class="mw-page-title-main">Luminous blue variable</span> Type of star that is luminous, blue, and variable in brightness

Luminous blue variables (LBVs) are massive evolved stars that show unpredictable and sometimes dramatic variations in their spectra and brightness. They are also known as S Doradus variables after S Doradus, one of the brightest stars of the Large Magellanic Cloud. They are considered to be rare.

<span class="mw-page-title-main">SN 2005df</span> 2005 supernova event in the constellation Reticulum

SN 2005df was a Type Ia supernova in the barred spiral galaxy NGC 1559, which is located in the southern constellation of Reticulum. The event was discovered in Australia by Robert Evans on the early morning of August 5, 2005 with a 13.8 magnitude, and was confirmed by A. Gilmore on August 6. The supernova was classified as Type Ia by M. Salvo and associates. It was positioned at an offset of 15.0″ east and 40.0″ north of the galaxy's nucleus, reaching a maximum brightness of 12.3 on August 18. The supernova luminosity appeared unreddened by dust from its host galaxy.

<span class="mw-page-title-main">Luminous red nova</span> Stellar explosion with a distinct red colour

A luminous red nova is a stellar explosion thought to be caused by the merging of two stars. They are characterised by a distinct red colour, and a light curve that fades slowly with resurgent brightness in the infrared. Luminous red novae are not related to standard novae, which are explosions that occur on the surface of white dwarf stars.

<span class="mw-page-title-main">Supernova impostor</span> Stellar explosions that appear to be supernovae

Supernova impostors are stellar explosions that appear at first to be a supernova but do not destroy their progenitor stars. As such, they are a class of extra-powerful novae. They are also known as Type V supernovae, Eta Carinae analogs, and giant eruptions of luminous blue variables (LBV).

SN 1961V was an abnormal, supernova-like event that was a potential supernova impostor. The potential impostor nature of SN 1961V was first identified by Fritz Zwicky in 1964. SN 1961V occurred in galaxy NGC 1058, about 9.3 Mpc away. Unlike many supernovae, the progenitor star is tentatively known: an extremely large, very bright blue star, similar to Eta Carinae. Mass estimates of the precursor star were as high as 2000 times the mass of the sun, but these are likely to be extreme overestimates. If SN 1961V was not a supernova then it was most likely an extremely large outburst by a luminous blue variable star.

<span class="mw-page-title-main">RR Telescopii</span> 1944 nova in the constellation Telescopium

RR Telescopii is a symbiotic nova in the southern constellation Telescopium. It was recorded on photographic survey plates as a faint variable star between photographic magnitude (mpg) 9 to 16.6 from 1889 to 1944. In late 1944 the star began to brighten, increasing by about 7 magnitudes, from mpg ≈ 14 to brighter than 8. Brightening continued with a diminished rate of increase after early 1945, but the overall outburst was not noted until the star was seen at about 6.0, the threshold of naked eye brightness, in July 1948. At that time it was given the designation Nova Telescopii 1948. Since mid-1949 it has declined in brightness slowly, albeit accompanied by some remarkable changes in its spectrum, and as of August 2013 it had faded to visual magnitude around 12.

<span class="mw-page-title-main">HV 2112</span> Small Magellanic Cloud star in the constellation Tucana

HV 2112 is a cool luminous variable star in the Small Magellanic Cloud. Until 2018, it was considered to be the most likely candidate for a Thorne–Żytkow object, but it is now thought to be an asymptotic giant branch star.

<span class="mw-page-title-main">V4998 Sagittarii</span> Luminous blue variable star in the constellation Sagittarius

V4998 Sagittarii is a luminous blue variable star (LBV) in the constellation of Sagittarius. Located some 25,000 light-years away, the star is positioned about 7 pc away from a starburst cluster known as the Quintuplet cluster. It has an ejection nebula measuring over 0.8 pc in diameter, formed 5000-10,000 years ago through large eruptions. The star has a large mass comparable to the Pistol Star and a luminosity of around 4 million times the Sun (L). This places the star as one of the most massive and luminous stars known.

<span class="mw-page-title-main">ASASSN-15lh</span> 2015 hypernova event in the constellation Indus

ASASSN-15lh is an extremely luminous astronomical transient event discovered by the All Sky Automated Survey for SuperNovae (ASAS-SN), with the appearance of a superluminous supernova event. It was first detected on June 14, 2015, located within a faint galaxy in the southern constellation Indus, and was the most luminous supernova-like object ever observed. At its peak, ASASSN-15lh was 570 billion times brighter than the Sun, and 20 times brighter than the combined light emitted by the Milky Way Galaxy. The emitted energy was exceeded by PS1-10adi.

The All Sky Automated Survey for SuperNovae (ASAS-SN) is an automated program to search for new supernovae and other astronomical transients, headed by astronomers from the Ohio State University, including Christopher Kochanek and Krzysztof Stanek. It has 20 robotic telescopes in both the northern and southern hemispheres. It can survey the entire sky approximately once every day.

A failed supernova is an astronomical event in time domain astronomy in which a star suddenly brightens as in the early stage of a supernova, but then does not increase to the massive flux of a supernova. They could be counted as a subcategory of supernova imposters. They have sometimes misleadingly been called unnovae.

<span class="mw-page-title-main">Hypernova</span> Supernova that ejects a large mass at unusually high velocity

A hypernova is a very energetic supernova which is believed to result from an extreme core-collapse scenario. In this case, a massive star collapses to form a rotating black hole emitting twin astrophysical jets and surrounded by an accretion disk. It is a type of stellar explosion that ejects material with an unusually high kinetic energy, an order of magnitude higher than most supernovae, with a luminosity at least 10 times greater. Hypernovae release so much of gamma rays they usually appear similar to a type Ic supernova, but with unusually broad spectral lines indicating an extremely high expansion velocity. Hypernovae are one of the mechanisms for producing long gamma ray bursts (GRBs), which range from 2 seconds to over a minute in duration. They have also been referred to as superluminous supernovae, though that classification also includes other types of extremely luminous stellar explosions that have different origins.

<span class="mw-page-title-main">V392 Persei</span> Nova in the constellation Perseus

V392 Persei, also known as Nova Persei 2018, is a bright nova in the constellation Perseus discovered on April 29, 2018. It was previously known as a dwarf nova.

<span class="mw-page-title-main">SN 2018cow</span> Supernova event of June 2018 in the constellation Hercules

SN 2018cow was a very powerful astronomical explosion, 10–100 times brighter than a normal supernova, spatially coincident with galaxy CGCG 137-068, approximately 200 million ly (60 million pc) distant in the Hercules constellation. It was discovered on 16 June 2018 by the ATLAS-HKO telescope, and had generated significant interest among astronomers throughout the world. Later, on 10 July 2018, and after AT 2018cow had significantly faded, astronomers, based on follow-up studies with the Nordic Optical Telescope (NOT), formally described AT 2018cow as SN 2018cow, a type Ib supernova, showing an "unprecedented spectrum for a supernova of this class"; although others, mostly at first but also more recently, have referred to it as a type Ic-BL supernova. An explanation to help better understand the unique features of AT 2018cow has been presented. AT2018cow is one of the few reported Fast Blue Optical Transients (FBOTs) observed in the Universe. In May 2020, however, a much more powerful FBOT than AT 2018cow was reportedly observed.

<span class="mw-page-title-main">V1027 Cygni</span> Star in the constellation Cygnus

V1027 Cygni is a luminous yellow supergiant star located in the constellation of Cygnus, about 14,000 light years away. For a time, it was thought that it could be a low-mass post-AGB star, however recent parallax measurements published in Gaia DR3 have shown this to likely not be the case, and instead it is likely a massive yellow supergiant star.

<span class="mw-page-title-main">SN 2004et</span> Supernova in the constellation Cygnus

SN 2004et is a bright type IIP supernova that occurred in the spiral galaxy NGC 6946, about 22 million light years away from earth. The star that made the supernova was falsely identified to be a yellow supergiant but was then identified to be a type red supergiant of 13.8 solar masses. It was discovered alongside SN 2017eaw. SN 2004et showed some rebrightening about 1000 days after the initial supernova probably due to ejecta of circumstellar material or thermal echo. SN 2004et was one of the most luminous type IIP supernovae ever recorded and characterized.

References

  1. 1 2 3 4 5 6 7 8 9 10 11 Adams, S. M.; Kochanek, C. S; Gerke, J. R.; Stanek, K. Z.; Dai, X. (9 September 2016). "The search for failed supernovae with the Large Binocular Telescope: confirmation of a disappearing star". Monthly Notices of the Royal Astronomical Society. 468 (4): 4968–4981. arXiv: 1609.01283v1 . Bibcode:2017MNRAS.468.4968A. doi:10.1093/mnras/stx816.
  2. 1 2 Gerke, J. R.; Kochanek, C. S.; Stanek, K. Z. (2015). "The search for failed supernovae with the Large Binocular Telescope: First candidates". Monthly Notices of the Royal Astronomical Society. 450 (3): 3289. arXiv: 1411.1761 . Bibcode:2015MNRAS.450.3289G. doi:10.1093/mnras/stv776.
  3. Humphreys, Roberta M. (2019-10-31). "Comments on the Progenitor of NGC 6946-BH1". Research Notes of the AAS. 3 (10): 164. arXiv: 1911.02037 . Bibcode:2019RNAAS...3..164H. doi: 10.3847/2515-5172/ab5191 . ISSN   2515-5172. S2CID   207880492.
  4. Williams, Matt (16 September 2016). "Have we really just seen the birth of a black hole?". PhysOrg . Retrieved 16 September 2016.
  5. "Biography in Context - Document". link.galegroup.com. Retrieved 2018-02-11.
  6. Nowogrodzki, Anna (12 September 2016). "First glimpse of a black hole being born from a star's remains". New Scientist . Retrieved 17 September 2016.
  7. Beasor, Emma R.; Hosseinzadeh, Griffin; Smith, Nathan; Davies, Ben; Jencson, Jacob E.; Pearson, Jeniveve; Sand, David J. (2023). "JWST reveals a luminous infrared source at the position of the failed supernova candidate N6946-BH1". arXiv: 2309.16121 .{{cite journal}}: Cite journal requires |journal= (help)