Nuclear famine

Last updated

Nuclear famine is a hypothesized famine considered a potential threat following global or regional nuclear exchange. It is thought that even subtle cooling effects resulting from a regional nuclear exchange could have a substantial impact on agriculture production, triggering a food crisis amongst the world's survivors.

Contents

While belief in the "nuclear winter" hypothesis is both popular and heavily debated, the issue of potential food supply disruption from blast and fallout effects following a nuclear war is less controversial. Several books have been written on the food supply issue, including Fallout Protection , Nuclear War Survival Skills , Would the Insects Inherit the Earth and Other Subjects of Concern to Those Who Worry About Nuclear War , and most recently the extreme nuclear winter and comet impact countermeasuring Feeding Everyone No Matter What .

Together with these largely introductory texts, more official tomes with a focus on organization, agriculture, and radioecology include Nutrition in the Postattack Environment by the RAND Corporation, [1] the continuity of government plans for preventing a famine in On Reorganizing After Nuclear Attack, [2] and Survival of the Relocated Population of the U.S. After a Nuclear Attack by Nobel Prize winner Eugene Wigner, [3] while those focused solely on radioecology and agriculture include Effects of Fallout Radiation on Crop Production, [4] [5] Behavior of Radioactive Fallout in Soils and Plants, [6] and practical countermeasures that were intended to be taken on the individual level in Defense Against Radioactive Fallout on the Farm. [7]

Early work

One of the first works to discuss the problem of fallout, farming, food and supply was Herman Kahn's 1960 publication On Thermonuclear War . Kahn argued that while total war would indeed be an "unprecedented catastrophe", food which is slightly-to-moderately contaminated need not be wasted as the ingestion of such food by the elderly would not result in any observable increase in cancer in this cohort. This is due to the fact that, like other common carcinogens such as cigarette smoke, cancers do not immediately emerge after exposure to radiation or specifically from nuclear fallout; instead cancer has a minimum latency period of some 5+ years, which is supported by the research of Project 4.1. It is for this reason that the elderly could eat slight-to-moderately contaminated food without much, if any, ill effect, allowing for the most uncontaminated food to be saved for younger generations.

Overview

From 1983-1985, in a time period during which the "nuclear winter" hypothesis was notably still in its early "apocalyptic" 1-D computer model phase, more than 300 physical, atmospheric, agricultural and ecological scientists from over 30 countries around the world came together to participate in the Scientific Committee on Problems of the Environment-Environmental Effects of Nuclear War (SCOPE-ENUWAR) project. This project assessed the global consequences of nuclear war, resulting in a two-volume publication titled Environmental Consequences of Nuclear War, detailing the physical, atmospheric, ecological and agricultural effects of a major nuclear war. [8] [9] In the publication, it is predicted that billions of survivors in the aftermath of nuclear war, even in non-combatant countries, may experience a dwindling food supply (if the continuity of government countermeasures were not fielded) which plunges survivors into "massive levels of malnutrition and starvation," and in dire situations, "only a small fraction of the current world population could expect to survive a few years". [10]

Many processes can be involved leading up to a massive food shortage on a global scale. To begin, crops, stored food and agricultural supplies such as fertilizers and pesticides can be instantly destroyed in nuclear blasts; nuclear contamination of soil, air and water can render food unsafe to eat, and crops unable to grow properly; and uncontrollable fires can impede normal agricultural or food gathering activities. Experts predicted that in the first few years that follow a nuclear war, more complex processes, such as the crippling of the international economy and trade systems, collapse of global food transportation and distribution networks, loss of exportation incentives and importation, drastic climatic stress on the agroecosystems, and associated chaos and disruption in society can spawn to escalate the problem of food shortage. [10] [11]

Following the publication of Environmental Consequences of Nuclear War, more studies have emerged based on modeling and analysis of hypothetical nuclear exchanges between nuclear-armed nations. The conclusions of these studies illustrate that a nuclear war is a self-destructive road to mass starvation, and echoed the statement made in The Medical Implications of Nuclear War, a publication by the National Academy of Sciences, that "the primary mechanism for human fatalities would likely not be from blast effects, not from thermal radiation burns, and not from ionizing radiation, but, rather, from mass starvation". [12]

While the total number of global nuclear weapons had declined by two thirds following the U.S.-Soviet Strategic Arms Reduction Treaty (START) compared to the early 80s, some experts feel that the risk of nuclear conflict has not decreased, but has instead risen. [13] This is due to nuclear proliferation as more countries such as India, Pakistan, and North Korea now have nuclear arsenals, increasing the risk of regional nuclear conflicts. Growing military tensions, accidents, sabotages and cyber-attacks are all potential trigger points of massive nuclear disruption and regional, if not global famine.

Effects of nuclear winter on agroecosystems

Based on the faulty studies [14] performed early in the 1980s, it was predicted that an American-Soviet nuclear war would project so much light-blocking smoke into the atmosphere that months to years of "nuclear winter" could take place and bring any agricultural activity in the Northern Hemisphere to an acute halt. [15] [16] This was on top of exaggerated concerns [17] about the development of worldwide toxic photochemical ozone smog from high energy nuclear blasts, [18] which was projected to bring about environmental conditions so disruptive for terrestrial plants and marine planktons to propagate, such that crop and marine harvests will be detrimentally affected.

Biologists have long analyzed that a number of factors arising from "nuclear winter" will induce a significant impact on agriculture. For instance, nuclear war in growing seasons can bring about sudden episodes of low temperature (-10 degree Celsius or more) for days to weeks, and drawing reference from the "year without a summer" in 1816, episodes of freezing events are capable of destroying a large quantity of crops. [11] In addition, growing season would potentially be shortened, as reported by Robock et al., who calculated that a regional nuclear war between India and Pakistan will substantially reduce freeze-free growing season in the Northern and Southern Hemispheres for several years and devastate agricultural produce as crops do not have sufficient time to reach maturity. [19]

In contrast, the natural marine ecosystems, a major supplier of food to human societies, are less vulnerable to sudden temperature fall. However, they are highly sensitive to reduced incident sunlight and increased level of UV-B radiation. [11] In the event of a large-scale nuclear war, a mere 25% reduction in ozone is predicted to cause an enhanced UV-B radiation that reduce net photosynthesis in the surface euphotic zone by 35%, and in the whole euphotic zone by 10% (euphotic zone refers to depths in the ocean with light levels sufficient for active photosynthesis). With a corresponding reduction in light available for photosynthesis, phytoplankton populations were in the 1985 book expected to plummet, [20] and scientists had even speculated that most of the phytoplankton and herbivorous zooplanktons (that feed on phytoplanktons) in more than half of the Northern Hemisphere oceans would die. [16] More modern appraisals of potential ozone layer issues arising from nuclear fireballs have determined these earlier assumptions to have been completely unfounded. According to The World Bank, the ocean supplies the world's population with 16% of their animal protein intake; given that the marine food chains are built upon the photosynthesis of phytoplanktons, large-scale nuclear wars, in these 1980s models and books, was regarded as inadvertently devastating fisheries and to affect millions, if not billions of people who rely on the ocean for food.

Effects of nuclear war on food distribution

In addition to the adverse effects on the agroecosystems, socio-economical factors of war and nuclear destructions also possess far-reaching implications on food availability. It was observed in the aftermath of atomic bombings in Hiroshima and Nagasaki that food was even more scarce as crops in nearby regions were destroyed and distribution of food from other parts of Japan was cut off as a result of the destruction of railroads, when crop production was already low in previous years due to war and poor weather. [21] Not long after the war in 1946, the amount of food available in Japan could only provide an average citizen with 1325 calories a day, a drop from 2000 calories per day in 1941. These problems worsened in the following years, and by 1946, an average citizen was only provided with 800 calories a day.[ citation needed ] Although the total death toll due to starvation in Japan immediately after World War II could not be calculated,[ why? ] a distinguished Japanese historian, Daikichi Irokawa, noted that "immediately after the 1945 defeat, some estimated that 10 million people were likely to starve to death".[ dubious ]

Today, 85% of the nations in the world have low to marginal amount of homegrown food to sustain themselves and are increasingly reliant on well-connected food trade networks for imported food.[ citation needed ] A recent study[ by whom? ] (2014) examined the consequences of continental-scale disruptions on wheat and rice trade networks that can occur when global food supply is substantially reduced, such as following a large-scale nuclear war. Considering the tendency for exporting countries to withhold their crops in times of food shortage, the prediction model in this study determined that the amount of wheat and rice exports are reduced combined with losses in export networks. Critically, the authors found that the least developed countries will suffer greater import losses due to financial constraints, and the loss of trade networks will eventually lead to a larger population vulnerable to food shortages. [22]

Global famine due to regional nuclear conflict

Much of the research to date on potential nuclear war-induced climate change focuses on a hypothetical, large-scale nuclear exchange between modern day Russia and the United States. However, the post-Cold War world also includes a number of other nuclear-armed countries — such as India, Pakistan, and North Korea — that are currently engaged in de facto or frozen armed conflicts with their neighbors. In comparison to "global" nuclear war, a regional conflict between nations with relatively small nuclear arsenals would likely produce less dramatic climate effects. Nonetheless, it has been argued that global cooling resulting from such a conflict could have large-scale impacts on agriculture and food supply systems worldwide.

Several studies led by Alan Robock of Rutgers University describe this possibility. A 2007 analysis using contemporary climate models found that a hypothetical nuclear exchange between India and Pakistan involving 100 Hiroshima-size bombs (less than 0.1% of the explosive yield of the current global nuclear arsenal) would be sufficient to cause drastic global cooling. The model not only predicted effects consistent with the traditional "nuclear winter" concept, but also suggested that climate effects would last longer than previously expected. [23] These effects could include marked changes in normal seasonal patterns, a 10% average decline in rainfall around the world, and "a cooling of several degrees ... over large areas of North America and Eurasia, including most of the grain-growing regions". [19]

A related 2012 study assimilated a dynamic agrosystem model to predict the agricultural effects of an India-Pakistan war. The model in this case showed that a regional nuclear war on a separate continent could lead to a significant drop in yield for both corn and soybean production in the American Midwest, with the greatest crop losses occurring five years following the event. [24] Over the ten years following the event, corn production was predicted to decline by an average of 10% and soybean by an average of 6–12%, depending on location. Year-to-year variability was expected to be high, and could be affected by anomalies in temperature, rainfall, and sunlight.

Other studies based on a Robock et al. style India-Pakistan war utilize a different agricultural model to predict effects on rice production in China. After taking into consideration the weather conditions and farming practices specific to different provinces, rice production was predicted to decline by an average of 21% for the first four years and by approximately 10% the following six years. [25] While potential adaptive measures (such as increasing rice plantations in less affected provinces or fertilizer adjustments) could be implemented, these strategies come with their own limitations and consequences—including further environmental pollution. Chinese production of maize and wheat could also be affected. [26] In particular, wheat production in the wake of such an incident could drop by more than 50% in the first year and decline by an average of 39% in the first 5 years.

A new study developed to evaluate the impact of a famine due to a nuclear winter for the Nature Food Journal. They hypothesized severe effects on global food security and voiced concerns about various countries that already have issues with acquiring various supplies outside of food. This study was concerned about the possibility of a dust cloud caused by a nuclear exchange that would act like ones that have occurred on mars would cause issues for Earth. Their study had found that 5 Tg of soot and ash would be enough to cause a famine. The severe mass food shortage would be one that livestock and aquatic food production would not be able to compensate for. The extent of climate disruption of various methods of food production would take a heavy amount of lives on Earth. The study estimated 5 billion lives to be lost with the occurrence of a nuclear famine. For comparison, the Earth's population had just reached 8 billion on November 15, 2022. A nuclear famine would prove to be an apocalypse that many believe should be a concern when considering political and nuclear intrigue. [27]

Vulnerable populations

The International Physicians for the Prevention of Nuclear War (IPPNW) reported in 2013 that more than two billion people would be at risk of starvation in the event of a limited nuclear exchange, such as one that could occur between India and Pakistan, or by the use of even a small number of the nuclear weapons held by the US and Russia. [28] [29]

This report argued that the world is in a state in which it is particularly vulnerable to even modest declines in food production. In turn, small changes in average global temperature can have disproportionately large effects on crops. Agricultural studies predicting substantial declines in U.S. and Chinese crop production may be conservative, as they do not take into account ozone depletion or daily temperature extremes. They cite the example of the Mount Tambora volcanic eruption in 1815, which produced an average annual temperature deviation of only −0.7 °C, but which brought mid-summer killing frosts to the mid-Atlantic states [30] and caused up to 75% crop losses in northern Europe. [31]

In addition, the report authors argue that small perturbations in the food supply are highly amplified for malnourished populations. In particular, about 800 million people are chronically malnourished, and even a 10% decline in their food consumption would put them at risk. [32] World reserves of grain stocks could serve as a buffer to this; however, rough estimates suggest that current reserves would only last approximately 68–77 days. [28]

Famines are also often associated with epidemics. Following the Mount Tambora eruption, an 1816 famine in Ireland triggered a typhus epidemic in Ireland that spread to much of Europe, and the Bengal famine of 1943 was associated with major localized epidemics of cholera, malaria, smallpox, and dysentery. [28] [ better source needed ] Similarly, the vast and crowded megacities of the developing world could see major outbreaks of infectious disease as a secondary result of famine.[ citation needed ]

However, as reported in a paper published in the journal Public Health Reports, it is one of a number of prevalent myths that infectious diseases always occur after a disaster in cities. [33] [34]

Epidemics seldom occur after a disaster, and dead bodies do not lead to catastrophic outbreaks of infectious diseases. Intuitively, epidemic diseases, illnesses, and injuries might be expected following major disasters. However, as noted by de Goyet, epidemics seldom occur after disasters, and unless deaths are caused by one of a small number of infectious diseases such as smallpox, typhus, or plague, exposure to dead bodies does not cause disease ... Cholera and typhoid seldom pose a major health threat after disasters unless they are already endemic.

See also

Related Research Articles

<span class="mw-page-title-main">Nuclear weapon</span>

A nuclear weapon is an explosive device that derives its destructive force from nuclear reactions, either fission or a combination of fission and fusion reactions, producing a nuclear explosion. Both bomb types release large quantities of energy from relatively small amounts of matter.

<span class="mw-page-title-main">Nuclear winter</span> Hypothetical climatic effect of nuclear war

Nuclear winter is a severe and prolonged global climatic cooling effect that is hypothesized to occur after widespread firestorms following a large-scale nuclear war. The hypothesis is based on the fact that such fires can inject soot into the stratosphere, where it can block some direct sunlight from reaching the surface of the Earth. It is speculated that the resulting cooling would lead to widespread crop failure and famine. When developing computer models of nuclear-winter scenarios, researchers use the conventional bombing of Hamburg, and the Hiroshima firestorm in World War II as example cases where soot might have been injected into the stratosphere, alongside modern observations of natural, large-area wildfire-firestorms.

<span class="mw-page-title-main">Nuclear warfare</span> Military conflict that deploys nuclear weaponry

Nuclear warfare, also known as atomic warfare, is a military conflict or prepared political strategy that deploys nuclear weaponry. Nuclear weapons are weapons of mass destruction; in contrast to conventional warfare, nuclear warfare can produce destruction in a much shorter time and can have a long-lasting radiological result. A major nuclear exchange would likely have long-term effects, primarily from the fallout released, and could also lead to secondary effects, such as "nuclear winter", nuclear famine, and societal collapse. A global thermonuclear war with Cold War-era stockpiles, or even with the current smaller stockpiles, may lead to various scenarios including the extinction of the human species.

<span class="mw-page-title-main">Famine</span> Widespread scarcity of food

A famine is a widespread scarcity of food, caused by several factors including war, natural disasters, crop failure, widespread poverty, an economic catastrophe or government policies. This phenomenon is usually accompanied or followed by regional malnutrition, starvation, epidemic, and increased mortality. Every inhabited continent in the world has experienced a period of famine throughout history. During the 19th and 20th century, Southeast and South Asia, as well as Eastern and Central Europe, suffered the greatest number of fatalities. Deaths caused by famine declined sharply beginning in the 1970s, with numbers falling further since 2000. Since 2010, Africa has been the most affected continent in the world by famine.

<span class="mw-page-title-main">Nuclear fallout</span> Residual radioactive material following a nuclear blast

Nuclear fallout is the residual radioactive material propelled into the upper atmosphere following a nuclear blast, so called because it "falls out" of the sky after the explosion and the shock wave has passed. It commonly refers to the radioactive dust and ash created when a nuclear weapon explodes. The amount and spread of fallout is a product of the size of the weapon and the altitude at which it is detonated. Fallout may get entrained with the products of a pyrocumulus cloud and fall as black rain. This radioactive dust, usually consisting of fission products mixed with bystanding atoms that are neutron-activated by exposure, is a form of radioactive contamination.

A cobalt bomb is a type of "salted bomb": a nuclear weapon designed to produce enhanced amounts of radioactive fallout, intended to contaminate a large area with radioactive material, potentially for the purpose of radiological warfare, mutual assured destruction or as doomsday devices.

<span class="mw-page-title-main">Nuclear and radiation accidents and incidents</span> Severe disruptive events involving fissile or fusile materials

A nuclear and radiation accident is defined by the International Atomic Energy Agency (IAEA) as "an event that has led to significant consequences to people, the environment or the facility. Examples include lethal effects to individuals, large radioactivity release to the environment, reactor core melt." The prime example of a "major nuclear accident" is one in which a reactor core is damaged and significant amounts of radioactive isotopes are released, such as in the Chernobyl disaster in 1986 and Fukushima nuclear disaster in 2011.

<span class="mw-page-title-main">Duck and cover</span> Suggested method of personal protection against the effects of a nuclear explosion

"Duck and cover" is a method of personal protection against the effects of a nuclear explosion. Ducking and covering is useful in offering a degree of protection to personnel located outside the radius of the nuclear fireball but still within sufficient range of the nuclear explosion that standing upright and uncovered is likely to cause serious injury or death. In the most literal interpretation, the focus of the maneuver is primarily on protective actions one can take during the first few crucial seconds-to-minutes after the event, while the film of the same name and a full encompassing of the advice also cater to providing protection up to weeks after the event.

Downwinders were individuals and communities in the intermountain between the Cascade and Rocky Mountain ranges primarily in Arizona, Nevada, New Mexico and Utah but also in Oregon, Washington, and Idaho who were exposed to radioactive contamination or nuclear fallout from atmospheric or underground nuclear weapons testing, and nuclear accidents.

<span class="mw-page-title-main">Effects of the Chernobyl disaster</span> Overview of the effects of the Chernobyl disaster

The 1986 Chernobyl disaster triggered the release of radioactive contamination into the atmosphere in the form of both particulate and gaseous radioisotopes. As of 2022, it was the world's largest known release of radioactivity into the environment.

<span class="mw-page-title-main">Nuclear explosion</span> Explosion from fission or fusion reaction

A nuclear explosion is an explosion that occurs as a result of the rapid release of energy from a high-speed nuclear reaction. The driving reaction may be nuclear fission or nuclear fusion or a multi-stage cascading combination of the two, though to date all fusion-based weapons have used a fission device to initiate fusion, and a pure fusion weapon remains a hypothetical device. Nuclear explosions are used in nuclear weapons and nuclear testing.

<span class="mw-page-title-main">Strontium-90</span> Radioactive isotope of strontium

Strontium-90 is a radioactive isotope of strontium produced by nuclear fission, with a half-life of 28.8 years. It undergoes β decay into yttrium-90, with a decay energy of 0.546 MeV. Strontium-90 has applications in medicine and industry and is an isotope of concern in fallout from nuclear weapons, nuclear weapons testing, and nuclear accidents.

<span class="mw-page-title-main">Nuclear holocaust</span> Scenario of civilization collapse or human extinction by nuclear weapons

A nuclear holocaust, also known as a nuclear apocalypse, nuclear annihilation, nuclear armageddon, or atomic holocaust, is a theoretical scenario where the mass detonation of nuclear weapons causes globally widespread destruction and radioactive fallout. Such a scenario envisages large parts of the Earth becoming uninhabitable due to the effects of nuclear warfare, potentially causing the collapse of civilization and, in the worst case, extinction of humanity and/or termination of most biological life on Earth.

<span class="mw-page-title-main">Effects of nuclear explosions on human health</span>

The medical effects of the atomic bomb upon humans can be put into the four categories below, with the effects of larger thermonuclear weapons producing blast and thermal effects so large that there would be a negligible number of survivors close enough to the center of the blast who would experience prompt/acute radiation effects, which were observed after the 16 kiloton yield Hiroshima bomb, due to its relatively low yield:

<span class="mw-page-title-main">Christopher Busby</span> British scientist

Christopher Busby is a British scientist primarily studying the health effects of internal ionising radiation. Busby is a director of Green Audit Limited, a private company, and scientific advisor to the Low Level Radiation Campaign (LLRC).

<span class="mw-page-title-main">Alan Robock</span> American climatologist

Alan Robock is an American climatologist. He is currently a Distinguished Professor in the Department of Environmental Sciences at Rutgers University, New Jersey. He advocates nuclear disarmament and, in 2010 and 2011, met with Fidel Castro during lecture trips to Cuba to discuss the dangers of nuclear weapons. Alan Robock was a 2007 IPCC author, a member of the organisation when it was awarded the Nobel Peace Prize, "for their efforts to build up and disseminate greater knowledge about man-made climate change, and to lay the foundations for the measures that are needed to counteract such change".

<i>Feeding Everyone No Matter What</i> Book on crop-destroying catastrophes (2014)

Feeding Everyone No Matter What: Managing Food Security After Global Catastrophe is a 2014 book by David Denkenberger and Joshua M. Pearce and published by Elsevier under their Academic Press.

<span class="mw-page-title-main">Effects of climate change on agriculture</span> Effects of climate change on agriculture

There are numerous effects of climate change on agriculture, many of which are making it harder for agricultural activities to provide global food security. Rising temperatures and changing weather patterns often result in lower crop yields due to water scarcity caused by drought, heat waves and flooding. These effects of climate change can also increase the currently-rare risk of several regions suffering simultaneous crop failures, which would have significant consequences for the global food supply. Many pests and plant diseases are also expected to either become more prevalent or to spread to new regions. The world's livestock are also expected to be affected by many of the same issues, from greater heat stress to animal feed shortfalls and the spread of parasites and vector-borne diseases.

<span class="mw-page-title-main">Environmental issues in the United Arab Emirates</span>

Environmental issues in the United Arab Emirates (UAE) are caused by the exploitation of natural resources, rapid population growth, and high energy demand. The continuing temperature rise caused by global warming contributes to UAE's water scarcity, drought, rising sea level, and aridity. The countryside of the UAE, characterized with its great arid land, infrequent precipitation, and high temperatures are already facing long-term aridity. This precondition is very vulnerable to the effects of climate change and contributes to worsening water scarcity, quality, and water contamination.

References

  1. Pogrund, Robert Seymour (1966). "Nutrition in the postattack environment". Archived from the original on 2015-01-28.
  2. Brown, William Morle (January 1, 1968). On Reorganizing After Nuclear Attack. Archived from the original on October 27, 2016 via www.rand.org.
  3. "Survival of the relocated population of the U.S. after a nuclear attack 1976. full PDF" (PDF). Archived from the original (PDF) on February 7, 2017.
  4. Killion, D. D.; Constantin, M. J. (September 6, 1975). "Effects of fallout radiation on crop production" via inis.iaea.org.
  5. "Physical Effects of Nuclear Warfare" (PDF). October 25, 2010. Archived from the original (PDF) on 2010-10-25.
  6. Behavior of Radioactive Fallout in Soils and Plants. Washington. 1969-12-31. doi:10.17226/18567. hdl:2027/mdp.39015003391342. ISBN   978-0-309-29626-7. Archived from the original on 2016-10-19. Retrieved 2016-10-15. Behavior of Radioactive Fallout in Soils and Plants (1963)
  7. "Defense against radioactive fallout on the farm / [prepared by the Agricultural Research Service, U.S. Department of Agriculture, in cooperation with the Atomic Energy Commission, the Office of Civil Defense, and the U.S. Public Health Service.]". Washington, D.C. : U.S. Dept. of Agriculture. September 6, 1965 via Internet Archive.
  8. Pittock, Barrie; Ackerman, Thomas; Paul, Crutzen; Charles, Shapiro (1986). Environmental Consequences of Nuclear WarVolume I- Physical and Atmospheric Effects. Scientific Committee on Problems of the Environment (SCOPE) of the International Council of Scientific Unions (ICSU). Archived from the original on 16 July 2010. Retrieved 27 July 2016.
  9. Mark, Harwell; Thomas, Hutchinson (1985). Environmental Consequences of Nuclear War Volume II-Ecological and Agricultural Effects. Scientific Committee on Problems of the Environment (SCOPE) of the International Council of Scientific Unions. Archived from the original on 16 July 2010. Retrieved 27 July 2016.
  10. 1 2 Mark, Harwell; Thomas, Hutchinson (1985). Environmental Consequences of Nuclear War Volume II: ecological and Agricultural Effects (PDF). John Wiley & Sons Ltd on behalf of SCOPE of the ICSU. p. Chapter 5. Archived (PDF) from the original on 2010-07-18.
  11. 1 2 3 Harwell, M., and C. Harwell. (1986). "Nuclear Famine: The Indirect Effects of Nuclear War", pp. 117–135 in Solomon, F. and R. Marston (Eds.). The Medical Implications of Nuclear War. Washington, D.C.: National Academy Press. ISBN   0309036925.
  12. Fredric, Solomon; Robert, Marston (Jan 1, 1866). The Medical Implications of Nuclear War. Washington, D.C.: National Academy of Sciences. ISBN   9780309036924.
  13. Julian, Borger (Jan 7, 2016). "Nuclear weapons risk greater than in cold war, says ex-Pentagon chief". The Guardian. Archived from the original on 29 July 2016. Retrieved 27 July 2016.
  14. An assessment of global atmospheric effects of a major nuclear conflict /. Air Force surveys in geophysics; no. 450. Hanscom AFB, MA. September 6, 1988. hdl:2027/uc1.31822020694212.
  15. Richard, Turco; Owen, Toon; Thomas, Ackerman; James, Pollack; Carl, Sagan (Dec 23, 1983). "Nuclear Winter: Global Consequences of Multiple Nuclear Explosions". Science. 222 (460): 1283–92. Bibcode:1983Sci...222.1283T. doi:10.1126/science.222.4630.1283. PMID   17773320. S2CID   45515251.
  16. 1 2 Paul, Crutzen; John, Birks (Dec 1982). "The Atmosphere after a Nuclear War: Twilight at Noon". Nuclear War: The Aftermath. Vol. 11. Pergamon Press. p. 114. ISBN   9780080281766. Archived from the original on 2016-10-13.
  17. "John Hampson's warnings of disaster". www.bmartin.cc. Archived from the original on November 30, 2014.
  18. John, Birks; Sherry, Stephens (1986). Possible Toxic Environments Following a Nuclear War. Washington, D.C.: National Academy of Sciences.
  19. 1 2 Alan, Robock; Luke, Oman; Georgiy, Stenchikov; Charles, Bardeen; Richard, Turco (Apr 19, 2007). "Climatic consequences of regional nuclear conflicts" (PDF). Atmospheric Chemistry and Physics. 7 (8): 2003–2012. Bibcode:2007ACP.....7.2003R. doi: 10.5194/acp-7-2003-2007 . Archived (PDF) from the original on 2013-06-29.
  20. Mark, Harwell; Thomas, Hutchinson (1985). Environmental Consequences of Nuclear War Volume II: ecological and Agricultural Effects (PDF). John Wiley & Sons Ltd on behalf of SCOPE of the ICSU. p. Chapter 3. Archived (PDF) from the original on 2010-07-18.
  21. Frank, Richard (1999). Downfall: The End of the Imperial Japanese Empire. Random House. ISBN   9780679414247.
  22. Puma, Michael; Bose, Satyajit; Chon, So Young; Cook, Benjamin (22 May 2014). "Assessing the evolving fragility of the global food system". Environmental Research Letters. 10 (2): 024007. doi: 10.1088/1748-9326/10/2/024007 .
  23. Alan, Robock; Luke, Oman; Georgiy, Stenchikov (Jul 6, 2007). "Nuclear winter revisited with a modern climate model and current nuclear arsenals: Still catastrophic consequences". Journal of Geophysical Research. 112 (D13): D13107. Bibcode:2007JGRD..11213107R. doi:10.1029/2006JD008235.
  24. Özdoğan, Mutlu; Robock, Alan; Kucharik, Christopher J. (22 June 2012). "Impacts of a nuclear war in South Asia on soybean and maize production in the Midwest United States". Climate Change. 116 (2): 373–387. CiteSeerX   10.1.1.694.6786 . doi:10.1007/s10584-012-0518-1. S2CID   2837628.
  25. Xia, Lili; Robock, Alan (2013). "Impacts of a nuclear war in South Asia on rice production in Mainland China" (PDF). Climate Change. 116 (2): 357–372. Bibcode:2013ClCh..116..357X. doi:10.1007/s10584-012-0475-8. S2CID   13189109. Archived (PDF) from the original on 17 March 2016. Retrieved 13 February 2016.
  26. Xia, Lili; Mills, Michael; Stenke, Andrea; Helfand, Ira. "Global famine after a regional nuclear war" (PDF). Submitted to Earth's Future, 2013. Archived (PDF) from the original on 12 March 2016. Retrieved 13 February 2016.
  27. Kallis, Giorgos (2020-06-24). Limits. doi:10.1515/9781503611566. ISBN   9781503611566.
  28. 1 2 3 Helfand, Ira. "Nuclear Famine: Two Billion People at Risk?" (PDF). International Physicians for the Prevention of Nuclear War. Archived (PDF) from the original on 5 April 2016. Retrieved 13 February 2016.
  29. Loretz, John. "Nobel Laureate Warns Two Billion at Risk from Nuclear Famine" (PDF). IPPNW. Archived (PDF) from the original on 3 December 2016. Retrieved 13 February 2016.
  30. Stommel H, Stommel E (1979). "The year without a summer". Scientific American. 240 (6): 176–186. Bibcode:1979SciAm.240f.176S. doi:10.1038/scientificamerican0679-176.
  31. Post, J. (1983). "Climatic change and subsistence crises". Journal of Interdisciplinary History. 14: 153–160. doi:10.2307/203521. JSTOR   203521.
  32. Hefland, Ira. "An Assessment of the Extent of Projected Global Famine Resulting From Limited, Regional Nuclear War" (PDF). Physicians for Social Responsibility. Royal Society of Medicine. Archived from the original (PDF) on 10 November 2015. Retrieved 13 February 2016.
  33. Jacob B, Mawson AR, Payton M, Guignard JC (2008). "Disaster mythology and fact: Hurricane Katrina and social attachment". Public Health Rep. 123 (5): 555–66. doi:10.1177/003335490812300505. PMC   2496928 . PMID   18828410.
  34. "Archived copy". Archived from the original on 2016-08-27. Retrieved 2017-12-08.{{cite web}}: CS1 maint: archived copy as title (link)