Recoverin

Last updated
Recoverin
Recov.jpg
Recoverin tetramer, Bos taurus
Identifiers
SymbolRCVRN
Alt. symbolsRCV1
NCBI gene 5957
HGNC 9937
OMIM 179618
RefSeq NM_002903
UniProt P35243
Other data
Locus Chr. 17 p13.1
Search for
Structures Swiss-model
Domains InterPro

Recoverin (abbreviated Recov) is a 23 kilodalton (kDa) neuronal calcium-binding protein that is primarily detected in the photoreceptor cells of the eye. [1] It plays a key role in the inhibition of rhodopsin kinase, a molecule which regulates the phosphorylation of rhodopsin. [2] A reduction in this inhibition helps regulate sensory adaptation in the retina, since the light-dependent channel closure in photoreceptors causes calcium levels to decrease, which relieves the inhibition of rhodopsin kinase by calcium-bound recoverin, leading to a more rapid inactivation of metarhodopsin II (activated form of rhodopsin).

Contents

Structure & Function

Recoverin is involved in the recovery phase of visual excitation and in adaptation to background light. [3] It controls the life span of photoexcited rhodopsin by helping to inhibit rhodopsin kinase. [4] An image of bovine recoverin with 3.00 Å resolution is shown. [5] This three-dimensional structure was determined by X-ray diffraction. Covalently attached at the amino-terminal of recoverin is a myristoyl group. [3] When the protein binds calcium ions, it undergoes a conformational change and brings out the myristoyl group from the binding portion so that the group is able to either interact with the target or the protein can move to a different region. [3] When recoverin is not bound to calcium, it stays in cytosol. When recoverin binds calcium, it migrates to the disc membrane and is embedded into the membrane using the myristoyl group to anchor itself. This calcium-bound form of recoverin slows the activity of rhodopsin kinase, resulting in the prolongation of light sensitivity for rhodopsin. [3] Recent publications point out additional functions for recoverin. For instance, it goes through a light-dependent intracellular translocation to rod synaptic terminals and improves the signal transfer between rods and rod bipolar cells in the retina of mice. [5]

In humans, the recoverin protein is encoded by the RCVRN gene. [1]

Related Research Articles

<span class="mw-page-title-main">Rod cell</span> Photoreceptor cells that can function in lower light better than cone cells

Rod cells are photoreceptor cells in the retina of the eye that can function in lower light better than the other type of visual photoreceptor, cone cells. Rods are usually found concentrated at the outer edges of the retina and are used in peripheral vision. On average, there are approximately 92 million rod cells in the human retina. Rod cells are more sensitive than cone cells and are almost entirely responsible for night vision. However, rods have little role in color vision, which is the main reason why colors are much less apparent in dim light.

Visual phototransduction is the sensory transduction process of the visual system by which light is detected by photoreceptor cells in the vertebrate retina. A photon is absorbed by a retinal chromophore, which initiates a signal cascade through several intermediate cells, then through the retinal ganglion cells (RGCs) comprising the optic nerve.

<span class="mw-page-title-main">Lipid signaling</span> Biological signaling using lipid molecules

Lipid signaling, broadly defined, refers to any biological cell signaling event involving a lipid messenger that binds a protein target, such as a receptor, kinase or phosphatase, which in turn mediate the effects of these lipids on specific cellular responses. Lipid signaling is thought to be qualitatively different from other classical signaling paradigms because lipids can freely diffuse through membranes. One consequence of this is that lipid messengers cannot be stored in vesicles prior to release and so are often biosynthesized "on demand" at their intended site of action. As such, many lipid signaling molecules cannot circulate freely in solution but, rather, exist bound to special carrier proteins in serum.

<span class="mw-page-title-main">Hippocalcin</span> Protein-coding gene in the species Homo sapiens

Hippocalcin is a protein that in humans is encoded by the HPCA gene.

<span class="mw-page-title-main">G protein-coupled receptor kinase</span>

G protein-coupled receptor kinases are a family of protein kinases within the AGC group of kinases. Like all AGC kinases, GRKs use ATP to add phosphate to Serine and Threonine residues in specific locations of target proteins. In particular, GRKs phosphorylate intracellular domains of G protein-coupled receptors (GPCRs). GRKs function in tandem with arrestin proteins to regulate the sensitivity of GPCRs for stimulating downstream heterotrimeric G protein and G protein-independent signaling pathways.

<span class="mw-page-title-main">Cortactin</span> Protein found in humans

Cortactin is a monomeric protein located in the cytoplasm of cells that can be activated by external stimuli to promote polymerization and rearrangement of the actin cytoskeleton, especially the actin cortex around the cellular periphery. It is present in all cell types. When activated, it will recruit Arp2/3 complex proteins to existing actin microfilaments, facilitating and stabilizing nucleation sites for actin branching. Cortactin is important in promoting lamellipodia formation, invadopodia formation, cell migration, and endocytosis.

<span class="mw-page-title-main">Neurocalcin</span> Mammalian protein found in Homo sapiens

Neurocalcin is a neuronal calcium-binding protein that belongs to the neuronal calcium sensor (NCS) family of proteins. It expressed in mammalian brains. It possesses a Ca2+/myristoyl switch

<span class="mw-page-title-main">Neuronal calcium sensor-1</span> Neuronal calcium sensory protein

Neuronal calcium sensor-1 (NCS-1) also known as frequenin homolog (Drosophila) (freq) is a protein that is encoded by the FREQ gene in humans. NCS-1 is a member of the neuronal calcium sensor family, a class of EF hand containing calcium-myristoyl-switch proteins.

Rhodopsin kinase is a serine/threonine-specific protein kinase involved in phototransduction. This enzyme catalyses the following chemical reaction:

<span class="mw-page-title-main">MAPK3</span> Protein-coding gene in the species Homo sapiens

Mitogen-activated protein kinase 3, also known as p44MAPK and ERK1, is an enzyme that in humans is encoded by the MAPK3 gene.

<span class="mw-page-title-main">CAMK4</span> Protein-coding gene in the species Homo sapiens

Calcium/calmodulin-dependent protein kinase type IV is an enzyme that in humans is encoded by the CAMK4 gene.

<span class="mw-page-title-main">Sodium-hydrogen exchange regulatory cofactor 2</span> Protein-coding gene in the species Homo sapiens

Sodium-hydrogen exchange regulatory cofactor NHE-RF2 (NHERF-2) also known as tyrosine kinase activator protein 1 (TKA-1) or SRY-interacting protein 1 (SIP-1) is a protein that in humans is encoded by the SLC9A3R2 gene.

<span class="mw-page-title-main">Glycylpeptide N-tetradecanoyltransferase 1</span> Protein-coding gene in the species Homo sapiens

Glycylpeptide N-tetradecanoyltransferase 1 also known as myristoyl-CoA:protein N-myristoyltransferase 1 (NMT-1) is an enzyme that in humans is encoded by the NMT1 gene. It belongs to the protein N-terminal methyltransferase and glycylpeptide N-tetradecanoyltransferase family of enzymes.

<span class="mw-page-title-main">CDK5R1</span> Protein-coding gene in the species Homo sapiens

Cyclin-dependent kinase 5 activator 1 is an enzyme that in humans is encoded by the CDK5R1 gene.

<span class="mw-page-title-main">CAMK1</span> Protein-coding gene in the species Homo sapiens

Calcium/calmodulin-dependent protein kinase type 1 is an enzyme that in humans is encoded by the CAMK1 gene.

<span class="mw-page-title-main">SAG (gene)</span>

S-arrestin is a protein that in humans is encoded by the SAG gene.

<span class="mw-page-title-main">Phosducin</span> Protein-coding gene in the species Homo sapiens

Phosducin, also known as PDC, is a human protein and gene. It belongs to the phosducin family of proteins.

<span class="mw-page-title-main">GNGT1</span> Protein-coding gene in the species Homo sapiens

Guanine nucleotide-binding protein G(T) subunit gamma-T1 is a protein that in humans is encoded by the GNGT1 gene. Either GNGT1 or GNGT2 is the gamma subunit (Gγ) of the Gβγ part of transducin, a heterotrimeric G-protein naturally expressed in vertebrate retina rod and cone cells. GNGT1 only occurs in rod cells, and GNGT2 only occurs in cone cells, with a different alpha (Gα) subunit.

<span class="mw-page-title-main">RASA3</span> Protein-coding gene in the species Homo sapiens

Ras GTPase-activating protein 3 is an enzyme that in humans is encoded by the RASA3 gene.

G-protein-coupled receptor kinase 7 is a serine/threonine-specific protein kinase involved in phototransduction. This enzyme catalyses the phosphorylation of cone (color) photopsins in retinal cones during high acuity color vision primarily in the fovea.

References

  1. 1 2 Murakami A, Yajima T, Inana G (August 1992). "Isolation of human retinal genes: recoverin cDNA and gene". Biochem. Biophys. Res. Commun. 187 (1): 234–44. doi:10.1016/S0006-291X(05)81483-4. PMID   1387789.
  2. Chen, C.-K.; Inglese, J.; Lefkowitz, R.J.; Hurley, J.B. (1995). "Ca(2+)-Dependent Interaction of Recoverin with Rhodopsin Kinase in the Regulation of Rhodopsin Signaling". J. Biol. Chem. 270 (30): 18060–18065. doi: 10.1074/jbc.270.30.18060 . PMID   7629115.
  3. 1 2 3 4 "Recoverin" . Retrieved 20 November 2010.
  4. "Myristoyled Recoverin". Archived from the original on 15 July 2010. Retrieved 20 November 2010.
  5. 1 2 PDB: 2HET ; Weiergräber OH, Senin II, Zernii EY, Churumova VA, Kovaleva NA, Nazipova AA, Permyakov SE, Permyakov EA, Philippov PP, Granzin J, Koch KW (December 2006). "Tuning of a neuronal calcium sensor". J. Biol. Chem. 281 (49): 37594–602. doi: 10.1074/jbc.M603700200 . PMID   17015448.