2-Tetralone

Last updated
2-Tetralone
2-tetralone.png
2-Tetralone 3D ball.png
Names
Preferred IUPAC name
3,4-Dihydronaphthalen-2(1H)-one
Other names
β-Tetralone; 2-Tetralone
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.007.727 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 208-498-3
PubChem CID
UNII
  • InChI=1S/C10H10O/c11-10-6-5-8-3-1-2-4-9(8)7-10/h1-4H,5-7H2 X mark.svgN
    Key: KCKZIWSINLBROE-UHFFFAOYSA-N X mark.svgN
  • InChI=1/C10H10O/c11-10-6-5-8-3-1-2-4-9(8)7-10/h1-4H,5-7H2
    Key: KCKZIWSINLBROE-UHFFFAOYAE
  • c1ccc2c(c1)CCC(=O)C2
Properties
C10H10O
Molar mass 146.189 g·mol−1
AppearanceColourless liquid
Density 1.106 g/mL
Melting point 18 °C (64 °F; 291 K)
Boiling point 70–71 °C (158–160 °F; 343–344 K) /0.25 mm
in basic water
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

2-Tetralone is an organic chemical compound with the molecular formula C10H10O. This colourless oil is an intermediate in organic synthesis. It is a ketone derivative of tetralin, a hydrogenated derivative of naphthalene. A related compound is 1-tetralone.

2-Tetralone is prepared by reductive cleavage of 2-naphthyl ethers. [1]

Applications

2-Tetralone is an intermediate in the synthesis of a variety of pharmaceutical drugs including L-687,384, nepinalone, napamezole, [2] spirodone, and trioxifene.

Related Research Articles

Pyrrole is a heterocyclic aromatic organic compound, a five-membered ring with the formula C4H4NH. It is a colorless volatile liquid that darkens readily upon exposure to air. Substituted derivatives are also called pyrroles, e.g., N-methylpyrrole, C4H4NCH3. Porphobilinogen, a trisubstituted pyrrole, is the biosynthetic precursor to many natural products such as heme.

The Friedel–Crafts reactions are a set of reactions developed by Charles Friedel and James Crafts in 1877 to attach substituents to an aromatic ring. Friedel–Crafts reactions are of two main types: alkylation reactions and acylation reactions. Both proceed by electrophilic aromatic substitution.

<span class="mw-page-title-main">Imine</span> Organic compound or functional group containing a C=N bond

In organic chemistry, an imine is a functional group or organic compound containing a carbon–nitrogen double bond. The nitrogen atom can be attached to a hydrogen or an organic group (R). The carbon atom has two additional single bonds. Imines are common in synthetic and naturally occurring compounds and they participate in many reactions.

<span class="mw-page-title-main">Cyanohydrin</span> Functional group in organic chemistry

In organic chemistry, a cyanohydrin or hydroxynitrile is a functional group found in organic compounds in which a cyano and a hydroxy group are attached to the same carbon atom. The general formula is R2C(OH)CN, where R is H, alkyl, or aryl. Cyanohydrins are industrially important precursors to carboxylic acids and some amino acids. Cyanohydrins can be formed by the cyanohydrin reaction, which involves treating a ketone or an aldehyde with hydrogen cyanide (HCN) in the presence of excess amounts of sodium cyanide (NaCN) as a catalyst:

<span class="mw-page-title-main">Organotin chemistry</span> Branch of organic chemistry

Organotin compounds or stannanes are chemical compounds based on tin with hydrocarbon substituents. Organotin chemistry is part of the wider field of organometallic chemistry. The first organotin compound was diethyltin diiodide, discovered by Edward Frankland in 1849. The area grew rapidly in the 1900s, especially after the discovery of the Grignard reagents, which are useful for producing Sn–C bonds. The area remains rich with many applications in industry and continuing activity in the research laboratory.

<span class="mw-page-title-main">Organoboron chemistry</span> Study of compounds containing a boron-carbon bond

Organoboron chemistry or organoborane chemistry is the chemistry of organoboron compounds or organoboranes, which are chemical compounds of boron and carbon that are organic derivatives of borane (BH3), for example trialkyl boranes..

<span class="mw-page-title-main">Cyclooctatetraene</span> Chemical compound

1,3,5,7-Cyclooctatetraene (COT) is an unsaturated derivative of cyclooctane, with the formula C8H8. It is also known as [8]annulene. This polyunsaturated hydrocarbon is a colorless to light yellow flammable liquid at room temperature. Because of its stoichiometric relationship to benzene, COT has been the subject of much research and some controversy.

<span class="mw-page-title-main">Cinnoline</span> Chemical compound

Cinnoline is an aromatic heterocyclic compound with the formula C8H6N2. It is isomeric with other naphthyridines including quinoxaline, phthalazine and quinazoline.

<span class="mw-page-title-main">Dakin oxidation</span>

The Dakin oxidation is an organic redox reaction in which an ortho- or para-hydroxylated phenyl aldehyde or ketone reacts with hydrogen peroxide in base to form a benzenediol and a carboxylate. Overall, the carbonyl group is oxidized, and the hydrogen peroxide is reduced.

<span class="mw-page-title-main">Organosilicon chemistry</span> Organometallic compound containing carbon–silicon bonds

Organosilicon compounds are organometallic compounds containing carbon–silicon bonds. Organosilicon chemistry is the corresponding science of their preparation and properties. Most organosilicon compounds are similar to the ordinary organic compounds, being colourless, flammable, hydrophobic, and stable to air. Silicon carbide is an inorganic compound.

<span class="mw-page-title-main">Methyl vinyl ketone</span> Chemical compound

Methyl vinyl ketone (MVK, IUPAC name: butenone) is the organic compound with the formula CH3C(O)CH=CH2. It is a reactive compound classified as an enone, in fact the simplest example thereof. It is a colorless, flammable, highly toxic liquid with a pungent odor. It is soluble in water and polar organic solvents. It is a useful intermediate in the synthesis of other compounds.

The Bucherer reaction in organic chemistry is the reversible conversion of a naphthol to a naphthylamine in the presence of ammonia and sodium bisulfite. The reaction is widely used in the synthesis of dye precursors aminonaphthalenesulfonic acids.

<span class="mw-page-title-main">Organotitanium chemistry</span>

Organotitanium chemistry is the science of organotitanium compounds describing their physical properties, synthesis, and reactions. Organotitanium compounds in organometallic chemistry contain carbon-titanium chemical bonds. They are reagents in organic chemistry and are involved in major industrial processes.

<span class="mw-page-title-main">Schmidt reaction</span> Chemical reaction between an azide and a carbonyl derivative

In organic chemistry, the Schmidt reaction is an organic reaction in which an azide reacts with a carbonyl derivative, usually an aldehyde, ketone, or carboxylic acid, under acidic conditions to give an amine or amide, with expulsion of nitrogen. It is named after Karl Friedrich Schmidt (1887–1971), who first reported it in 1924 by successfully converting benzophenone and hydrazoic acid to benzanilide. The intramolecular reaction was not reported until 1991 but has become important in the synthesis of natural products. The reaction is effective with carboxylic acids to give amines (above), and with ketones to give amides (below).

<span class="mw-page-title-main">Erlenmeyer–Plöchl azlactone and amino-acid synthesis</span>

The Erlenmeyer–Plöchl azlactone and amino acid synthesis, named after Friedrich Gustav Carl Emil Erlenmeyer who partly discovered the reaction, is a series of chemical reactions which transform an N-acyl glycine to various other amino acids via an oxazolone.

1-Naphthol, or α-naphthol, is a fluorescent organic compound with the formula C10H7OH. It is a white solid. It is an isomer of 2-naphthol differing by the location of the hydroxyl group on the naphthalene ring. The naphthols are naphthalene homologues of phenol, with the hydroxyl group being more reactive than in the phenols. Both isomers are soluble in simple alcohols, ethers, and chloroform. They are precursors to a variety of useful compounds. Naphthols are used as biomarkers for livestock and humans exposed to polycyclic aromatic hydrocarbons.

<span class="mw-page-title-main">Indole</span> Organic compound with an intense fecal odor

Indole is an aromatic heterocyclic organic compound with the formula C8H7N. It has a bicyclic structure, consisting of a six-membered benzene ring fused to a five-membered pyrrole ring. Indole is widely distributed in the natural environment and can be produced by a variety of bacteria. As an intercellular signal molecule, indole regulates various aspects of bacterial physiology, including spore formation, plasmid stability, resistance to drugs, biofilm formation, and virulence. The amino acid tryptophan is an indole derivative and the precursor of the neurotransmitter serotonin.

A hydroxynaphthoquinone is any of several organic compounds that can be viewed as derivatives of a naphthoquinone through replacement of one hydrogen atom (H) by a hydroxyl group (-OH).

<span class="mw-page-title-main">Phenylpropanoic acid</span> Chemical compound

Phenylpropanoic acid or hydrocinnamic acid is a carboxylic acid with the formula C9H10O2 belonging to the class of phenylpropanoids. It is a white, crystalline solid with a sweet, floral scent at room temperature. Phenylpropanoic acid has a wide variety of uses including cosmetics, food additives, and pharmaceuticals.

<span class="mw-page-title-main">1-Tetralone</span> Chemical compound

1-Tetralone is a bicyclic aromatic hydrocarbon and a ketone. In terms of its structure, it can also be regarded as benzo-fused cyclohexanone. It is a colorless oil with a faint odor. It is used as starting material for agricultural and pharmaceutical agents. The carbon skeleton of 1-tetralone is found in natural products such as Aristelegone A (4,7-dimethyl-6-methoxy-1-tetralone) from the family of Aristolochiaceae used in traditional Chinese medicine.

References

  1. M. D. Soffer, M. P. Bellis, Hilda E. Gellerson, and Roberta A. Stewart "β-Tetralone" Org. Synth. 1952, 32, 97 doi : 10.15227/orgsyn.032.0097
  2. Wentland, Mark P.; Bailey, Denis M.; Alexander, E. John; Castaldi, Michael J.; Ferrari, Richard A.; Haubrich, Dean R.; Luttinger, Daniel A.; Perrone, Mark H. (1987). "Synthesis and antidepressant properties of novel 2-substituted 4,5-dihydro-1H-imidazole derivatives". Journal of Medicinal Chemistry. 30 (8): 1482–1489. doi:10.1021/jm00391a034. PMID   3039138.