20S-Hydroxycholesterol

Last updated
20S-Hydroxycholesterol
20S-hydroxycholesterol.svg
Names
IUPAC name
(3S,8S,9S,10R,13S,14S,17S)-17-[(2S)-2-Hydroxy-6-methylheptan-2-yl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol
Other names
20α-Hydroxycholesterol; 5-Cholestene-3β,20α-diol; 20(S)-OHC
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
PubChem CID
UNII
  • InChI=1S/C27H46O2/c1-18(2)7-6-14-27(5,29)24-11-10-22-21-9-8-19-17-20(28)12-15-25(19,3)23(21)13-16-26(22,24)4/h8,18,20-24,28-29H,6-7,9-17H2,1-5H3/t20-,21?,22?,23?,24-,25-,26-,27-/m0/s1
    Key: MCKLJFJEQRYRQT-BEOVMOENSA-N
  • CC(C)CCC[C@@](C)([C@H]1CCC2[C@@]1(CCC3C2CC=C4[C@@]3(CC[C@@H](C4)O)C)C)O
Properties
C27H46O2
Molar mass 402.663 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

20S-Hydroxycholesterol is a steroid of the oxysterol class. It is a human metabolite of cholesterol.

20S-Hydroxycholesterol has been the subject of research into its role in human health. For example, 20S-hydroxycholesterol has been found to be an allosteric activator of the Hedgehog signaling pathway, which has implications in cancer research. [1] [2] [3] [4] [5]

More recently, 20S-hydroxycholesterol was identified as an endogenous ligand for the sigma-2 receptor, which had previously been considered an orphan receptor since its discovery in 1990. [6] [7]

Related Research Articles

<span class="mw-page-title-main">Allosteric regulation</span> Regulation of enzyme activity

In biochemistry, allosteric regulation is the regulation of an enzyme by binding an effector molecule at a site other than the enzyme's active site.

<span class="mw-page-title-main">Paracrine signaling</span>

Paracrine signaling is a form of cell signaling, a type of cellular communication in which a cell produces a signal to induce changes in nearby cells, altering the behaviour of those cells. Signaling molecules known as paracrine factors diffuse over a relatively short distance, as opposed to cell signaling by endocrine factors, hormones which travel considerably longer distances via the circulatory system; juxtacrine interactions; and autocrine signaling. Cells that produce paracrine factors secrete them into the immediate extracellular environment. Factors then travel to nearby cells in which the gradient of factor received determines the outcome. However, the exact distance that paracrine factors can travel is not certain.

<span class="mw-page-title-main">Morphogen</span> Biological substance that guides development by non-uniform distribution

A morphogen is a substance whose non-uniform distribution governs the pattern of tissue development in the process of morphogenesis or pattern formation, one of the core processes of developmental biology, establishing positions of the various specialized cell types within a tissue. More specifically, a morphogen is a signaling molecule that acts directly on cells to produce specific cellular responses depending on its local concentration.

<span class="mw-page-title-main">Scaffold protein</span>

In biology, scaffold proteins are crucial regulators of many key signalling pathways. Although scaffolds are not strictly defined in function, they are known to interact and/or bind with multiple members of a signalling pathway, tethering them into complexes. In such pathways, they regulate signal transduction and help localize pathway components to specific areas of the cell such as the plasma membrane, the cytoplasm, the nucleus, the Golgi, endosomes, and the mitochondria.

In biology, cell signaling or cell communication is the ability of a cell to receive, process, and transmit signals with its environment and with itself. Cell signaling is a fundamental property of all cellular life in prokaryotes and eukaryotes. Signals that originate from outside a cell can be physical agents like mechanical pressure, voltage, temperature, light, or chemical signals. Cell signaling can occur over short or long distances, and as a result can be classified as autocrine, juxtacrine, intracrine, paracrine, or endocrine. Signaling molecules can be synthesized from various biosynthetic pathways and released through passive or active transports, or even from cell damage.

The Hedgehog signaling pathway is a signaling pathway that transmits information to embryonic cells required for proper cell differentiation. Different parts of the embryo have different concentrations of hedgehog signaling proteins. The pathway also has roles in the adult. Diseases associated with the malfunction of this pathway include cancer.

<span class="mw-page-title-main">Smoothened</span> Protein-coding gene in the species Homo sapiens

Smoothened is a protein that in humans is encoded by the SMO gene. Smoothened is a Class Frizzled G protein-coupled receptor that is a component of the hedgehog signaling pathway and is conserved from flies to humans. It is the molecular target of the natural teratogen cyclopamine. It also is the target of vismodegib, the first hedgehog pathway inhibitor to be approved by the U.S. Food and Drug Administration (FDA).

The MAPK/ERK pathway is a chain of proteins in the cell that communicates a signal from a receptor on the surface of the cell to the DNA in the nucleus of the cell.

<span class="mw-page-title-main">Liver X receptor</span> Nuclear receptor

The liver X receptor (LXR) is a member of the nuclear receptor family of transcription factors and is closely related to nuclear receptors such as the PPARs, FXR and RXR. Liver X receptors (LXRs) are important regulators of cholesterol, fatty acid, and glucose homeostasis. LXRs were earlier classified as orphan nuclear receptors, however, upon discovery of endogenous oxysterols as ligands they were subsequently deorphanized.

<span class="mw-page-title-main">Sigma-2 receptor</span> Protein-coding gene in the species Homo sapiens

The sigma-2 receptor (σ2R) is a sigma receptor subtype that has attracted attention due to its involvement in diseases such as cancer and neurological diseases. It is currently under investigation for its potential diagnostic and therapeutic uses.

Gq protein alpha subunit is a family of heterotrimeric G protein alpha subunits. This family is also commonly called the Gq/11 (Gq/G11) family or Gq/11/14/15 family to include closely related family members. G alpha subunits may be referred to as Gq alpha, Gαq, or Gqα. Gq proteins couple to G protein-coupled receptors to activate beta-type phospholipase C (PLC-β) enzymes. PLC-β in turn hydrolyzes phosphatidylinositol 4,5-bisphosphate (PIP2) to diacyl glycerol (DAG) and inositol trisphosphate (IP3). IP3 acts as a second messenger to release stored calcium into the cytoplasm, while DAG acts as a second messenger that activates protein kinase C (PKC).

The RAR-related orphan receptors (RORs) are members of the nuclear receptor family of intracellular transcription factors. There are three forms of ROR, ROR-α, -β, and -γ and each is encoded by a separate gene, RORA, RORB, and RORC respectively. The RORs are somewhat unusual in that they appear to bind as monomers to hormone response elements as opposed to the majority of other nuclear receptors which bind as dimers. They bind to DNA elements called ROR response elements (RORE).

<span class="mw-page-title-main">RAR-related orphan receptor gamma</span> Cellular receptor

RAR-related orphan receptor gamma (RORγ) is a protein that in humans is encoded by the RORC gene. RORγ is a member of the nuclear receptor family of transcription factors. It is mainly expressed in immune cells and it also regulates circadian rhythms. It may be involved in the progression of certain types of cancer.

<span class="mw-page-title-main">GPR183</span> Protein-coding gene in the species Homo sapiens

G-protein coupled receptor 183 also known as Epstein-Barr virus-induced G-protein coupled receptor 2 (EBI2) is a protein (GPCR) expressed on the surface of some immune cells, namely B cells and T cells; in humans it is encoded by the GPR183 gene. Expression of EBI2 is one critical mediator of immune cell localization within lymph nodes, responsible in part for the coordination of B cell, T cell, and dendritic cell movement and interaction following antigen exposure. EBI2 is a receptor for oxysterols. The most potent activator is 7α,25-dihydroxycholesterol (7α,25-OHC), with other oxysterols exhibiting varying affinities for the receptor. Oxysterol gradients drive chemotaxis, attracting the EBI2-expressing cells to locations of high ligand concentration. The GPR183 gene was identified due to its upregulation during Epstein-Barr virus infection of the Burkitt's lymphoma cell line BL41, hence its name: EBI2.

<span class="mw-page-title-main">TAS1R2</span> Protein

T1R2 - Taste receptor type 1 member 2 is a protein that in humans is encoded by the TAS1R2 gene.

Patched (Ptc) is a conserved 12-pass transmembrane protein receptor that plays an obligate negative regulatory role in the Hedgehog signaling pathway in insects and vertebrates. Patched is an essential gene in embryogenesis for proper segmentation in the fly embryo, mutations in which may be embryonic lethal. Patched functions as the receptor for the Hedgehog protein and controls its spatial distribution, in part via endocytosis of bound Hedgehog protein, which is then targeted for lysosomal degradation.

<span class="mw-page-title-main">Chemically induced dimerization</span>

Chemically Induced Dimerization (CID) is a biological mechanism in which two proteins bind only in the presence of a certain small molecule, enzyme or other dimerizing agent. Genetically engineered CID systems are used in biological research to control protein localization, to manipulate signalling pathways and to induce protein activation.

<span class="mw-page-title-main">Purmorphamine</span>

Purmorphamine was the first small-molecule agonist developed for the protein Smoothened, a key part of the hedgehog signaling pathway, which is involved in bone growth, cardiovascular regeneration and brain development as well as having a number of other functions in the body. Purmorphamine has been shown to induce osteogenesis in bone tissue as well as influencing growth and differentiation of neurons in the brain.

<span class="mw-page-title-main">CU-CPT9a</span> Chemical compound

CU-CPT9a is a drug which acts as a potent and selective antagonist of Toll-like receptor 8 (TLR8), with an IC50 of 0.5nM. Activation of toll-like receptors triggers release of cytokines and other signalling factors, leading to inflammation. This is an essential part of the immune system's response to infection, but chronic activation of TLR signalling is thought to be involved in various inflammatory and autoimmune disorders. CU-CPT9a has immunosuppressant properties, and may have applications in the treatment of autoimmune disorders, as well as being used in scientific research into the function of TLR8.

James Allen Wells is a Professor of Pharmaceutical Chemistry and Cellular & Molecular Pharmacology at the University of California, San Francisco (UCSF) and a member of the National Academy of Sciences. He received his B.A. degrees in biochemistry and psychology from University of California, Berkeley in 1973 and a PhD in biochemistry from Washington State University with Ralph Yount, PhD in 1979. He completed his postdoctoral studies at Stanford University School of Medicine with George Stark in 1982. He is a pioneer in protein engineering, phage display, fragment-based lead discovery, cellular apoptosis, and the cell surface proteome.

References

  1. Griffiths, William J.; Wang, Yuqin (2019). "Oxysterol research: A brief review". Biochemical Society Transactions. 47 (2): 517–526. doi:10.1042/BST20180135. PMC   6490702 . PMID   30936243.
  2. Kim, W. K.; Meliton, V.; Amantea, C. M.; Hahn, T. J.; Parhami, F. (2007). "20(S)-hydroxycholesterol inhibits PPARgamma expression and adipogenic differentiation of bone marrow stromal cells through a hedgehog-dependent mechanism". Journal of Bone and Mineral Research. 22 (11): 1711–1719. doi: 10.1359/jbmr.070710 . PMID   17638575. S2CID   935824.
  3. Nachtergaele, S.; Mydock, L. K.; Krishnan, K.; Rammohan, J.; Schlesinger, P. H.; Covey, D. F.; Rohatgi, R. (2012). "Oxysterols are allosteric activators of the oncoprotein Smoothened". Nature Chemical Biology. 8 (2): 211–220. doi:10.1038/nchembio.765. PMC   3262054 . PMID   22231273.
  4. Dwyer, J. R.; Sever, N.; Carlson, M.; Nelson, S. F.; Beachy, P. A.; Parhami, F. (2007). "Oxysterols are novel activators of the hedgehog signaling pathway in pluripotent mesenchymal cells". The Journal of Biological Chemistry. 282 (12): 8959–8968. doi: 10.1074/jbc.M611741200 . PMID   17200122.
  5. Nedelcu, D.; Liu, J.; Xu, Y.; Jao, C.; Salic, A. (2013). "Oxysterol binding to the extracellular domain of Smoothened in Hedgehog signaling". Nature Chemical Biology. 9 (9): 557–564. doi:10.1038/nchembio.1290. PMC   3749252 . PMID   23831757.
  6. Derek Lowe (November 22, 2021). "Another Orphan Reunited". In The Pipeline. Science.
  7. Cheng, Yu-Shiuan; Zhang, Tianyi; Ma, Xiang; Pratuangtham, Sarida; Zhang, Grace C.; Ondrus, Alexander A.; Mafi, Amirhossein; Lomenick, Brett; Jones, Jeffrey J.; Ondrus, Alison E. (2021). "A proteome-wide map of 20(S)-hydroxycholesterol interactors in cell membranes". Nature Chemical Biology. 17 (12): 1271–1280. doi:10.1038/s41589-021-00907-2. ISSN   1552-4450. PMC   8607797 . PMID   34799735.