| | |
| Names | |
|---|---|
| IUPAC name (24Ξ)-24a2-Homo-5ξ-stigmastane | |
| Systematic IUPAC name (1R,3aS,3bR,5aΞ,9aS,9bS,11aR)-9a,11a-Dimethyl-1-[(2R,5Ξ)-5-(propan-2-yl)octan-2-yl]hexadecahydro-1H-cyclopenta[a]phenanthrene | |
| Identifiers | |
3D model (JSmol) | |
| ChemSpider | |
PubChem CID | |
| |
| |
| Properties | |
| C30H54 | |
| Molar mass | 414.762 g·mol−1 |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). | |
24-n-Propylcholestane is a sterane biomarker molecule often found in marine source rocks. [1] [2] It is a C30 molecule, meaning that it is composed of thirty carbon atoms, and is one of the leading ways to distinguish a marine source rock from a terrigenous sample. It is composed of three six-carbon rings and one five-carbon ring, with two methyl groups and one eleven carbon side chain. 24-n-Propylcholestane has a molar mass of 414.76 g/mol.
24-n-Propylcholestane is a sterane, which are derived from sterols after being buried in the sediment. Sterols turn into steranes by saturating the sterol's double bond and removing the alcohol group. [3] Steranes are fairly stable, and are often found in source rocks and crude oils. [3]
24-n-Propylcholestane is derived from 24-n-propylcholesterol, which is made in the modern ocean by Chrysophyte algae. [4] Because of its known modern creator, it is thought that traces of 24-n-propylcholestane in ancient sediments were likely produced by older algaes of the same order Chrysophyte. [1] The marine algae is consumed by marine invertebrates, and so 24-n-propylcholesterols are also found in invertebrates, despite not being produced by them. [1] Regardless of which organism is observed containing 24-n-propylcholesterols, the molecule originated from Chrysophyte algae.
The ratio of 24-n-propylcholestanes to 24-iso-propylcholestanes is used as an indicator for the presence of sponges.
In sediments, sterane biomarkers are found as a mixture of stereoisomers. It can be difficult to separate out a specific stereoisomer, as is necessary for the detection of solely 24-n-propylcholestane. Because of this, 24-n-propylcholestane can be fairly difficult to detect using gas chromatography-mass spectrum (GC-MS). It has a m/z of 414 and a secondary peak at 217, and can be easily confused for a different group of C30 molecules, 4ɑ-methylsteranes. [1]
Kerogen is solid, insoluble organic matter in sedimentary rocks. It consists of a variety of organic materials, including dead plants, algae, and other microorganisms, that have been compressed and heated by geological processes. Altogether kerogen is estimated to contain 1016 tons of carbon. This makes it the most abundant source of organic compounds on earth, exceeding the total organic content of living matter 10,000-fold.
Hopanoids are a diverse subclass of triterpenoids with the same hydrocarbon skeleton as the compound hopane. This group of pentacyclic molecules therefore refers to simple hopenes, hopanols and hopanes, but also to extensively functionalized derivatives such as bacteriohopanepolyols (BHPs) and hopanoids covalently attached to lipid A.
Brassicasterol is a 28-carbon sterol synthesised by several unicellular algae (phytoplankton) and some terrestrial plants, like rape. This compound has frequently been used as a biomarker for the presence of (marine) algal matter in the environment, and is one of the ingredients for E number E499. There is some evidence to suggest that it may also be a relevant additional biomarker in Alzheimer's disease.
Sterane (cyclopentanoperhydrophenanthrenes) compounds are a class of tetracyclic compounds derived from steroids or sterols via diagenetic and catagenetic degradation and hydrogenation. Steranes have an androstane skeleton with a side chain at carbon C-17. The sterane structure constitutes the core of all sterols. Steranes are sometimes used as biomarkers for the presence of eukaryotic cells. The oldest preserved steranes are found in sedimentary rocks deposited ca. 720–820 million years ago.

In chemistry and geology, biomarkers are any suite of complex organic compounds composed of carbon, hydrogen and other elements or heteroatoms such as oxygen, nitrogen and sulfur, which are found in crude oils, bitumen, petroleum source rock and eventually show simplification in molecular structure from the parent organic molecules found in all living organisms. Essentially, they are complex carbon-based molecules derived from formerly living organisms. Each biomarker is quite distinctive when compared to its counterparts, as the time required for organic matter to convert to crude oil is characteristic. Most biomarkers also usually have high molecular mass.
5β-Coprostanol (5β-cholestan-3β-ol) is a 27-carbon stanol formed from the biohydrogenation of cholesterol (cholest-5en-3β-ol) in the gut of most higher animals and birds. This compound has frequently been used as a biomarker for the presence of human faecal matter in the environment.
Oleanane is a natural triterpenoid. It is commonly found in woody angiosperms and as a result is often used as an indicator of these plants in the fossil record. It is a member of the oleanoid series, which consists of pentacyclic triterpenoids where all rings are six-membered.
Cholestane is a saturated tetracyclic triterpene. This 27-carbon biomarker is produced by diagenesis of cholesterol and is one of the most abundant biomarkers in the rock record. Presence of cholestane, its derivatives and related chemical compounds in environmental samples is commonly interpreted as an indicator of animal life and/or traces of O2, as animals are known for exclusively producing cholesterol, and thus has been used to draw evolutionary relationships between ancient organisms of unknown phylogenetic origin and modern metazoan taxa. Cholesterol is made in low abundance by other organisms (e.g., rhodophytes, land plants), but because these other organisms produce a variety of sterols it cannot be used as a conclusive indicator of any one taxon. It is often found in analysis of organic compounds in petroleum.
A carbon-to-nitrogen ratio is a ratio of the mass of carbon to the mass of nitrogen in organic residues. It can, amongst other things, be used in analysing sediments and soil including soil organic matter and soil amendments such as compost.
Phytane is the isoprenoid alkane formed when phytol, a constituent of chlorophyll, loses its hydroxyl group. When phytol loses one carbon atom, it yields pristane. Other sources of phytane and pristane have also been proposed than phytol.
24-isopropyl cholestane is an organic molecule produced by specific sponges, protists and marine algae. The identification of this molecule at high abundances in Neoproterozoic rocks has been interpreted to reflect the presence of multicellular life prior to the rapid diversification and radiation of life during the Cambrian explosion. In this transitional period at the start of the Phanerozoic, single-celled organisms evolved to produce many of the evolutionary lineages present on Earth today. Interpreting 24-isopropyl cholestane in ancient rocks as indicating the presence of sponges before this rapid diversification event alters the traditional understanding of the evolution of multicellular life and the coupling of biology to changes in end-Neoproterozoic climate. However, there are several arguments against causally linking 24-isopropyl cholestane to sponges based on considerations of marine algae and the potential alteration of organic molecules over geologic time. In particular the discovery of 24-isopropyl cholestane in rhizarian protists implies that this biomarker cannot be used on its own to trace sponges. Interpreting the presence of 24-isopropyl cholestane in the context of changingglobal biogeochemical cycles at the Proterozoic-Phanerozoic transition remains an area of active research.
Crocetane, or 2,6,11,15-tetramethylhexadecane, is an isoprenoid hydrocarbon compound. Unlike its isomer phytane, crocetane has a tail-to-tail linked isoprenoid skeleton. Crocetane has been detected in modern sediments and geological records as a biomarker, often associated with anaerobic methane oxidation.
Epibrassicasterol is a type of cholesterol most commonly found in marine invertebrates. Epibrassicasterol is a 28 carbon cholesterol with an alpha oriented methyl group at carbon 24. It is often mixed isomerically with the more common beta-isomer, brassicasterol. Epibrassicasterol can be used as a biomarker to identify the presence of marine life in an environment and can be dated based on the location of fossilized remains in various rock structures.
Okenane, the diagenetic end product of okenone, is a biomarker for Chromatiaceae, the purple sulfur bacteria. These anoxygenic phototrophs use light for energy and sulfide as their electron donor and sulfur source. Discovery of okenane in marine sediments implies a past euxinic environment, where water columns were anoxic and sulfidic. This is potentially tremendously important for reconstructing past oceanic conditions, but so far okenane has only been identified in one Paleoproterozoic rock sample from Northern Australia.
24-Norcholestane, a steroid derivative, is used as a biomarker to constrain the source age of sediments and petroleum through the ratio between 24-norcholestane and 27-norcholestane, especially when used with other age diagnostic biomarkers, like oleanane. While the origins of this compound are still unknown, it is thought that they are derived from diatoms due to their identification in diatom rich sediments and environments. In addition, it was found that 24-norcholestane levels increased in correlation with diatom evolution. Another possible source of 24-norcholestane is from dinoflagellates, albeit to a much lower extent.
Chlorobactane is the diagenetic product of an aromatic carotenoid produced uniquely by green-pigmented green sulfur bacteria (GSB) in the order Chlorobiales. Observed in organic matter as far back as the Paleoproterozoic, its identity as a diagnostic biomarker has been used to interpret ancient environments.
Tetrahymanol is a gammacerane-type membrane lipid first found in the marine ciliate Tetrahymena pyriformis. It was later found in other ciliates, fungi, ferns, and bacteria. After being deposited in sediments that compress into sedimentary rocks over millions of years, tetrahymanol is dehydroxylated into gammacerane. Gammacerane has been interpreted as a proxy for ancient water column stratification.
Isoarborinol is a triterpenoid ubiquitously produced by angiosperms and is thus considered a biomarker for higher plants. Though no isoarborinol-producing microbe has been identified, isoarborinol is also considered a possible biomarker for marine bacteria, as its diagenetic end product, arborane, has been found in ancient marine sediments that predate the rise of plants. Importantly, isoarborinol may represent the phylogenetic link between hopanols and sterols.
Highly branched isoprenoids (HBIs) are long-chain alkenes produced by a small number of marine diatoms. There are a variety of highly branched isoprenoid structures, but C25 Highly branched isoprenoids containing 1 to 3 double bonds are the most common in the sedimentary record. Highly branched isoprenoids have been used as environmental proxies for sea ice conditions in the Arctic and Antarctic throughout the Holocene, and more recently, are being used to reconstruct more ancient ice records.
Lycopane (C40H82; 2,6,10,14,19,23,27,31-octamethyldotriacontane), a 40 carbon alkane isoprenoid, is a widely present biomarker that is often found in anoxic settings. It has been identified in anoxically deposited lacustrine sediments (such as the Messel formation and the Condor oil shale deposit). It has been found in sulfidic and anoxic hypersaline environments (such as the Sdom Formation). It has been widely identified in modern marine sediments, including the Peru upwelling zone, the Black Sea, and the Cariaco Trench. It has been found only rarely in crude oils.
A classic example of a biomarker and its relationship to the biological precursor is cholestane and cholesterol