2N2907

Last updated

The 2N2907 is a commonly available PNP bipolar junction transistor used for general purpose low-power amplifying or switching applications. It is designed for low to medium current, low power, medium voltage, and can operate at moderately high speeds. This transistor was made by several manufacturers; Texas Instruments released a data sheet for their version of this part dated March 1973. [1] An "A" suffix indicates a slightly higher breakdown voltage. [2] These transistors have an enduring popularity with electronics hobbyists. [3]

Contents

Specifications

It is a 0.6-ampere, 60-volt, 400-milliwatt transistor. Its transition frequency fT (where the current gain drops to one) under specified test conditions is 200 Megahertz. At low frequencies, the current gain (beta) is at least 100. The 2N2907 is used in a variety of analog amplification and switching applications.

Part numbers

The 2N2907 (PNP) and 2N2222 (NPN) are complementary transistor pairs. [4] Other types of transistors with different properties and connections have different part numbers. The prefix of each part number varies for each physical package type. Pin connections vary with different part numbers.

Transistor part numbers
BJT Thru-hole Surface-mount
TO-18 TO-92 SOT23 SOT223
PNP2N2907PN2907MMBT2907PZT2907A
NPN 2N2222 PN2222MMBT2222PZT2222A


See also

Related Research Articles

<span class="mw-page-title-main">Diode</span> Two-terminal electronic component

A diode is a two-terminal electronic component that conducts current primarily in one direction. It has low resistance in one direction and high resistance in the other.

<span class="mw-page-title-main">Transistor</span> Solid-state electrically operated switch also used as an amplifier

A transistor is a semiconductor device used to amplify or switch electrical signals and power. It is one of the basic building blocks of modern electronics. It is composed of semiconductor material, usually with at least three terminals for connection to an electronic circuit. A voltage or current applied to one pair of the transistor's terminals controls the current through another pair of terminals. Because the controlled (output) power can be higher than the controlling (input) power, a transistor can amplify a signal. Some transistors are packaged individually, but many more in miniature form are found embedded in integrated circuits. Because transistors are the key active components in practically all modern electronics, many people consider them one of the 20th century's greatest inventions.

Transistor–transistor logic (TTL) is a logic family built from bipolar junction transistors. Its name signifies that transistors perform both the logic function and the amplifying function, as opposed to earlier resistor–transistor logic (RTL) and diode–transistor logic (DTL).

In electronics, a multi-transistor configuration called the Darlington configuration is a circuit consisting of two bipolar transistors with the emitter of one transistor connected to the base of the other, such that the current amplified by the first transistor is amplified further by the second one. The collectors of both transistors are connected together. This configuration has a much higher current gain than each transistor taken separately. It acts like and is often packaged as a single transistor. It was invented in 1953 by Sidney Darlington.

<span class="mw-page-title-main">Emitter-coupled logic</span> Integrated circuit logic family

In electronics, emitter-coupled logic (ECL) is a high-speed integrated circuit bipolar transistor logic family. ECL uses an overdriven bipolar junction transistor (BJT) differential amplifier with single-ended input and limited emitter current to avoid the saturated region of operation and its slow turn-off behavior. As the current is steered between two legs of an emitter-coupled pair, ECL is sometimes called current-steering logic (CSL), current-mode logic (CML) or current-switch emitter-follower (CSEF) logic.

<span class="mw-page-title-main">Diode–transistor logic</span>

Diode–transistor logic (DTL) is a class of digital circuits that is the direct ancestor of transistor–transistor logic. It is called so because the logic gating functions AND and OR are performed by diode logic, while logical inversion (NOT) and amplification is performed by a transistor.

<span class="mw-page-title-main">555 timer IC</span> Integrated circuit used for timer applications

The 555 timer IC is an integrated circuit used in a variety of timer, delay, pulse generation, and oscillator applications. It is one of the most popular timing ICs due to its flexibility and price. Derivatives provide two or four timing circuits in one package. The design was first marketed in 1972 by Signetics and used bipolar junction transistors. Since then, numerous companies have made the original timers and later similar low-power CMOS timers. In 2017, it was said that over a billion 555 timers are produced annually by some estimates, and that the design was "probably the most popular integrated circuit ever made".

In computer engineering, a logic family is one of two related concepts:

<span class="mw-page-title-main">Electronic component</span> Discrete device in an electronic system

An electronic component is any basic discrete electronic device or physical entity part of an electronic system used to affect electrons or their associated fields. Electronic components are mostly industrial products, available in a singular form and are not to be confused with electrical elements, which are conceptual abstractions representing idealized electronic components and elements. A datasheet for an electronic component is a technical document that provides detailed information about the component's specifications, characteristics, and performance.

<span class="mw-page-title-main">TO-92</span> Small and cheap semiconductor package often used for transistors

The TO-92 is a widely used style of semiconductor package mainly used for transistors. The case is often made of epoxy or plastic, and offers compact size at a very low cost.

<span class="mw-page-title-main">2N3055</span> Early power transistor

The 2N3055 is a silicon NPN power transistor intended for general purpose applications. It was introduced in the early 1960s by RCA using a hometaxial power transistor process, transitioned to an epitaxial base in the mid-1970s. Its numbering follows the JEDEC standard. It is a transistor type of enduring popularity.

Texas Instruments Power, known more popularly by its acronym TIP, is a series of bipolar junction transistors manufactured by Texas Instruments. The series was introduced in the 1960s, and still sees some use today due to their simplicity, their durability, and their ease of use. A Texas Instruments catalog in 1966 lists the TIP04 and TIP14 part numbers.

<span class="mw-page-title-main">2N3904</span> Common NPN bipolar junction transistor

The 2N3904 is a common NPN bipolar junction transistor used for general-purpose low-power amplifying or switching applications. It is designed for low current and power, medium voltage, and can operate at moderately high speeds. It is complementary to the 2N3906 PNP transistor. Both types were registered by Motorola Semiconductor in the mid-1960s.

<span class="mw-page-title-main">2N2222</span> Common NPN bipolar junction transistor

The 2N2222 is a common NPN bipolar junction transistor (BJT) used for general purpose low-power amplifying or switching applications. It is designed for low to medium current, low power, medium voltage, and can operate at moderately high speeds. It was originally made in the TO-18 metal can as shown in the picture.

<span class="mw-page-title-main">2N3906</span> Common PNP bipolar junction transistor

The 2N3906 is a commonly used PNP bipolar junction transistor intended for general purpose low-power amplifying or switching applications. It is designed for low electric current and power and medium voltage, and can operate at moderately high speeds. It is complementary to the 2N3904 NPN transistor. Both types were registered by Motorola Semiconductor in the mid-1960s.

<span class="mw-page-title-main">1N4148 signal diode</span> Standard silicon switching diode

The 1N4148 is a standard silicon switching signal diode. It is one of the most popular and long-lived switching diodes because of its dependable specifications and low cost. Its name follows the JEDEC nomenclature. The 1N4148 is useful in switching applications up to about 100 MHz with a reverse-recovery time of no more than 4 ns.

<span class="mw-page-title-main">BC548</span>

The BC548 is a general-purpose NPN bipolar junction transistor commonly used in European and American electronic equipment. It is notably often the first type of bipolar transistor hobbyists encounter and is often featured in designs in hobby electronics magazines where a general-purpose transistor is required. The BC548 is low in cost and widely available.

<span class="mw-page-title-main">1N400x rectifier diode</span>

The 1N400x series is a family of popular one-ampere general-purpose silicon rectifier diodes commonly used in AC adapters for common household appliances. Its blocking voltage varies from 50 volts (1N4001) to 1000 volts (1N4007). This JEDEC device number series is available in the DO-41 axial package. Diodes with similar ratings are available in SMA and MELF surface mount packages.

<span class="mw-page-title-main">BC108 family</span>

The BC107, BC108 and BC109 are general-purpose low power silicon NPN bipolar junction transistors found very often in equipment and electronics books/articles from Europe, Australia and many other countries from the 1960s. They were created by Philips and Mullard in 1963 and introduced in April 1966. Initially in metal (TO-18) packages, the range expanded over time to include other package types, higher voltage ratings, and a better selection of gain groupings, as well as complementary PNP types. Some manufacturers have specified their parts with a higher power dissipation rating (Ptot) than others.

<span class="mw-page-title-main">TL431</span> Linear integrated circuit precision shunt regulator

The TL431 integrated circuit (IC) is a three-terminal adjustable precise shunt voltage regulator. With the use of an external voltage divider, a TL431 can regulate voltages ranging from 2.495 to 36 V, at currents up 100 mA. The typical initial deviation of reference voltage from the nominal 2.495 V level is measured in millivolts, the maximum worst-case deviation is measured in tens of millivolts. The circuit can control power transistors directly; combinations of the TL431 with power MOS transistors are used in high efficiency, very low dropout linear regulators. The TL431 is the de facto industry standard error amplifier circuit for switched-mode power supplies with optoelectronic coupling of the input and output networks.

References

  1. The Transistor and Diode Data Book for Design Engineers, Texas Instruments, Inc., no date, publication number CC-413 71242-73-CSS, page 4-151
  2. "2N2907 2N2905 GENERAL PURPOSE AMPLIFIERS AND SWITCHES" (PDF). SGS Thomson Microelectronics.
  3. Rudolf F. Graf and William Sheets (2001). Build your own low-power transmitters: projects for the electronics experimenter. Newnes. p. 14. ISBN   978-0-7506-7244-3. The 2N2222, 2N2905, and 2N3055 devices, for example, which date back to the 1960s but have been improved, are still useful in new designs and are still popular for experimenters.
  4. "2N2907 & 2N2907A datasheet" (PDF). Comset Semiconductors. Archived (PDF) from the original on August 19, 2019. Retrieved July 7, 2022.

Further reading

Historical Databooks