2N3906

Last updated
2N3906 transistors in plastic TO-92 packaging. The cases are marked with E, B, and C for lead identification. 2N3906 Transistors.png
2N3906 transistors in plastic TO-92 packaging. The cases are marked with E, B, and C for lead identification.
Photomicrograph of the transistor chip inside a 2N3906 transistor package, showing the conductive metal layers used to connect the semiconductor junctions to the package leads. The upper-left and lower-right quadrants are bonding pad areas where wires for two of the terminals are attached, and the other two quadrants have the actual transistor structures, in a bulk region that is contacted at the back side of the chip to the third terminal. 2N3906 top metal.jpg
Photomicrograph of the transistor chip inside a 2N3906 transistor package, showing the conductive metal layers used to connect the semiconductor junctions to the package leads. The upper-left and lower-right quadrants are bonding pad areas where wires for two of the terminals are attached, and the other two quadrants have the actual transistor structures, in a bulk region that is contacted at the back side of the chip to the third terminal.

The 2N3906 is a commonly used PNP bipolar junction transistor intended for general purpose low-power amplifying or switching applications. [1] [2] It is designed for low electric current and power and medium voltage, and can operate at moderately high speeds. It is complementary to the 2N3904 NPN transistor. [3] Both types were registered by Motorola Semiconductor in the mid-1960s.

Contents

Device packaging and specifications

The 2N3906 is manufactured in a plastic TO-92 case. When looking at the flat side with the leads pointed downward, the three leads emerging from the case are, from left to right, the emitter, base, and collector leads.

The 2N3906 is specified by a collector current of 200 mA, collector-base and collector-emitter voltages of 40 V, for power dissipation of 300 mW. Its transition frequency Ft is 250 MHz, with a beta of at least 100. [1]

Part numbers

The 2N3904 (NPN) and 2N3906 (PNP) are complementary transistor pairs. These transistors are available in package styles TO-92, SOT23, SOT223 with different prefixes.

Transistor part numbers
BJT Thru-hole Surface-mount
TO92 SOT23 SOT223
NPN2N3904 [3] MMBT3904 [4] PZT3904
PNP2N3906 [1] MMBT3906PZT3906

See also

Related Research Articles

<span class="mw-page-title-main">Transistor</span> Solid-state electrically operated switch also used as an amplifier

A transistor is a semiconductor device used to amplify or switch electrical signals and power. It is one of the basic building blocks of modern electronics. It is composed of semiconductor material, usually with at least three terminals for connection to an electronic circuit. A voltage or current applied to one pair of the transistor's terminals controls the current through another pair of terminals. Because the controlled (output) power can be higher than the controlling (input) power, a transistor can amplify a signal. Some transistors are packaged individually, but many more in miniature form are found embedded in integrated circuits. Because transistors are the key active components in practically all modern electronics, many people consider them one of the 20th century's greatest inventions.

<span class="mw-page-title-main">Bipolar junction transistor</span> Transistor that uses both electrons and holes as charge carriers

A bipolar junction transistor (BJT) is a type of transistor that uses both electrons and electron holes as charge carriers. In contrast, a unipolar transistor, such as a field-effect transistor (FET), uses only one kind of charge carrier. A bipolar transistor allows a small current injected at one of its terminals to control a much larger current flowing between the terminals, making the device capable of amplification or switching.

In electronics, a multi-transistor configuration called the Darlington configuration is a circuit consisting of two bipolar transistors with the emitter of one transistor connected to the base of the other, such that the current amplified by the first transistor is amplified further by the second one. The collectors of both transistors are connected together. This configuration has a much higher current gain than each transistor taken separately. It acts like and is often packaged as a single transistor. It was invented in 1953 by Sidney Darlington.

<span class="mw-page-title-main">Emitter-coupled logic</span>

In electronics, emitter-coupled logic (ECL) is a high-speed integrated circuit bipolar transistor logic family. ECL uses an overdriven bipolar junction transistor (BJT) differential amplifier with single-ended input and limited emitter current to avoid the saturated region of operation and its slow turn-off behavior. As the current is steered between two legs of an emitter-coupled pair, ECL is sometimes called current-steering logic (CSL), current-mode logic (CML) or current-switch emitter-follower (CSEF) logic.

<span class="mw-page-title-main">TRIAC</span> Solid-state semiconductor device

A TRIAC is a three-terminal electronic component that conducts current in either direction when triggered. The term TRIAC is a genericised trademark.

<span class="mw-page-title-main">Diode–transistor logic</span>

Diode–transistor logic (DTL) is a class of digital circuits that is the direct ancestor of transistor–transistor logic. It is called so because the logic gating functions AND and OR are performed by diode logic, while logical inversion (NOT) and amplification is performed by a transistor.

<span class="mw-page-title-main">IC power-supply pin</span> Power supply connections for integrated circuits

IC power-supply pins denote a voltage and current supply terminals in electric, electronics engineering, and in Integrated circuit design. Integrated circuits (ICs) have at least two pins that connect to the power rails of the circuit in which they are installed. These are known as the power-supply pins. However, the labeling of the pins varies by IC family and manufacturer. The double subscript notation usually corresponds to a first letter in a given IC family (transistors) notation of the terminals.

In electronics, derating is the operation of a device at less than its rated maximum capability to prolong its life. Typical examples include operations below the maximum power rating, current rating, or voltage rating.

<span class="mw-page-title-main">TO-92</span> Small and cheap semiconductor package often used for transistors

The TO-92 is a widely used style of semiconductor package mainly used for transistors. The case is often made of epoxy or plastic, and offers compact size at a very low cost.

<span class="mw-page-title-main">2N3055</span> Early power transistor

The 2N3055 is a silicon NPN power transistor intended for general purpose applications. It was introduced in the early 1960s by RCA using a hometaxial power transistor process, transitioned to an epitaxial base in the mid-1970s. Its numbering follows the JEDEC standard. It is a transistor type of enduring popularity.

<span class="mw-page-title-main">Sziklai pair</span>

In electronics, the Sziklai pair, also known as a complementary feedback pair, is a configuration of two bipolar transistors, similar to a Darlington pair. In contrast to the Darlington arrangement, the Sziklai pair has one NPN and one PNP transistor, and so it is sometimes also called the "complementary Darlington". The configuration is named for George C. Sziklai, thought to be its inventor.

<span class="mw-page-title-main">Integrated injection logic</span> Two-BJT transistor digital logic

Integrated injection logic (IIL, I2L, or I2L) is a class of digital circuits built with multiple collector bipolar junction transistors (BJT). When introduced it had speed comparable to TTL yet was almost as low power as CMOS, making it ideal for use in VLSI (and larger) integrated circuits. The gates can be made smaller with this logic family than with CMOS because complementary transistors are not needed. Although the logic voltage levels are very close (High: 0.7V, Low: 0.2V), I2L has high noise immunity because it operates by current instead of voltage. I2L was developed in 1971 by Siegfried K. Wiedmann and Horst H. Berger who originally called it merged-transistor logic (MTL). A disadvantage of this logic family is that the gates draw power when not switching unlike with CMOS.

Open collector, open drain, open emitter, and open source refer to integrated circuit (IC) output pin configurations that process the IC's internal function though a transistor with an exposed terminal that is internally unconnected. One of the IC's internal high or low voltage rails typically connects to another terminal of that transistor. When the transistor is off, the output is internally disconnected from any internal power rail, a state called "high-impedance" (Hi-Z). Open outputs configurations thus differ from push–pull outputs, which use a pair of transistors to output a specific voltage or current.

Texas Instruments Power, known more popularly by its acronym TIP, is a series of bipolar junction transistors manufactured by Texas Instruments. The series was introduced in the 1960s, and still sees some use today due to their simplicity, their durability, and their ease of use. A Texas Instruments catalog in 1966 lists the TIP04 and TIP14 part numbers.

<span class="mw-page-title-main">TO-3</span> Metal can semiconductor package for power semiconductors

In electronics, TO-3 is a designation for a standardized metal semiconductor package used for power semiconductors, including transistors, silicon controlled rectifiers, and, integrated circuits. TO stands for "Transistor Outline" and relates to a series of technical drawings produced by JEDEC.

<span class="mw-page-title-main">2N3904</span> Common NPN bipolar junction transistor

The 2N3904 is a common NPN bipolar junction transistor used for general-purpose low-power amplifying or switching applications. It is designed for low current and power, medium voltage, and can operate at moderately high speeds. It is complementary to the 2N3906 PNP transistor. Both types were registered by Motorola Semiconductor in the mid-1960s.

<span class="mw-page-title-main">2N2222</span> Common NPN bipolar junction transistor

The 2N2222 is a common NPN bipolar junction transistor (BJT) used for general purpose low-power amplifying or switching applications. It is designed for low to medium current, low power, medium voltage, and can operate at moderately high speeds. It was originally made in the TO-18 metal can as shown in the picture.

The 2N2907 is a commonly available PNP bipolar junction transistor used for general purpose low-power amplifying or switching applications. It is designed for low to medium current, low power, medium voltage, and can operate at moderately high speeds. This transistor was made by several manufacturers; Texas Instruments released a data sheet for their version of this part dated March 1973. An "A" suffix indicates a slightly higher breakdown voltage. These transistors have an enduring popularity with electronics hobbyists.

<span class="mw-page-title-main">BC548</span>

The BC548 is a general-purpose NPN bipolar junction transistor commonly used in European and American electronic equipment. It is notably often the first type of bipolar transistor hobbyists encounter and is often featured in designs in hobby electronics magazines where a general-purpose transistor is required. The BC548 is low in cost and widely available.

<span class="mw-page-title-main">BC108 family</span>

The BC107, BC108 and BC109 are general-purpose low power silicon NPN bipolar junction transistors found very often in equipment and electronics books/articles from Europe, Australia and many other countries from the 1960s. They were created by Philips and Mullard in 1963 and introduced in April 1966. Initially in metal (TO-18) packages, the range expanded over time to include other package types, higher voltage ratings, and a better selection of gain groupings, as well as complementary PNP types. Some manufacturers have specified their parts with a higher power dissipation rating (Ptot) than others.

References

  1. 1 2 3 "2N3906 Datasheet (TO-92)" (PDF). ON Semiconductor . February 2010. Archived (PDF) from the original on August 8, 2019.
  2. "2N3906 Datasheet (TO-92)" (PDF). Micro Commercial Components (MCC). January 2013. Archived (PDF) from the original on August 8, 2019.
  3. 1 2 "2N3904 Datasheet (TO-92)" (PDF). ON Semiconductor . August 2012. Archived (PDF) from the original on August 8, 2019.
  4. "MMBT3904 Transistor". el-component.com.

Further reading