3-Chlorobenzonitrile

Last updated
3-Chlorobenzonitrile
3-Chlorobenzonitrile.svg
Names
Other names
meta-Chlorobenzonitrile
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.011.065 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 212-172-6
PubChem CID
  • InChI=1S/C7H4ClN/c8-7-3-1-2-6(4-7)5-9/h1-4H
    Key: WBUOVKBZJOIOAE-UHFFFAOYSA-N
  • C1=CC(=CC(=C1)Cl)C#N
Properties
C7H4ClN
Molar mass 137.57 g·mol−1
Appearancecolorless solid
Melting point 40–41 °C (104–106 °F; 313–314 K) [1]
Hazards
GHS labelling:
GHS-pictogram-skull.svg GHS-pictogram-exclam.svg
Danger
H302, H312, H319
P264, P270, P273, P280, P301+P312, P302+P352, P305+P351+P338, P312, P322, P330, P337+P313, P361, P363, P405, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

3-Chlorobenzonitrile is an organic compound with the chemical formula ClC6H4CN. It is one of the isomers of chlorobenzonitrile.

Preparation and reactions

Typically, aryl nitriles are produced by ammoxidation. [2] 3-Chlorobenzonitrile can also be produced by dehydration of the aldoxime of 3-chlorobenzaldehyde. [3] It can also be produced by heating 3-chlorobenzylamine and iodine in ammonium acetate aqueous solution. [4]

In the presence of copper nanoparticles, 3-chlorobenzonitrile can be reduced by sodium borohydride to 3-chlorobenzylamine. [5] Some ruthenium catalyzers can catalysis the hydrolysis of 3-chlorobenzonitrile to form 3-chlorobenzamide. [6]

References

  1. Takashi Keumi; Masakazu Shimada; Toshio Morita; Hidehiko Kitajima (August 1990). "2-(Trifluoroacetyloxy)pyridine as a Mild Trifluoroacetylating Reagent of Amines and Alcohols". Bulletin of the Chemical Society of Japan. 63 (8): 2252–2256. doi:10.1246/bcsj.63.2252. ISSN   0009-2673.
  2. Pollak, Peter; Romeder, Gérard; Hagedorn, Ferdinand; Gelbke, Heinz-Peter (2000). "Nitriles". Ullmann's Encyclopedia of Industrial Chemistry . Weinheim: Wiley-VCH. doi:10.1002/14356007.a17_363. ISBN   978-3-527-30673-2.
  3. Stephan Enthaler; Maik Weidauer; Fanny Schröder (February 2012). "Straightforward zinc-catalyzed transformation of aldehydes and hydroxylamine hydrochloride to nitriles" . Tetrahedron Letters. 53 (7): 882–885. doi:10.1016/j.tetlet.2011.12.036 . Retrieved 2021-12-20.
  4. Yiming Ren; Shuo Jin (2017-01-01). "Molecular iodine/aqueous NH4OAc: a green reaction system for direct oxidative synthesis of nitriles from amines" . Journal of Advanced Oxidation Technologies. 20 (1). doi:10.1515/jaots-2016-0175. ISSN   2371-1175. S2CID   99163202 . Retrieved 2021-12-20.
  5. Asghar Zamani; Ahmad Poursattar Marjani; Abbas Nikoo; Mojtaba Heidarpour; Ahmad Dehghan (2018-03-04). "Synthesis and characterization of copper nanoparticles on walnut shell for catalytic reduction and C-C coupling reaction" . Inorganic and Nano-Metal Chemistry. 48 (3): 176–181. doi:10.1080/24701556.2018.1503676. ISSN   2470-1556. S2CID   140005906 . Retrieved 2021-12-20.
  6. Victorio Cadierno; Javier Francos; José Gimeno (2008-07-28). "Selective Ruthenium-Catalyzed Hydration of Nitriles to Amides in Pure Aqueous Medium Under Neutral Conditions" . Chemistry - A European Journal. 14 (22): 6601–6605. doi:10.1002/chem.200800847. PMID   18567025 . Retrieved 2021-12-20.