3-Chlorobenzonitrile

Last updated
3-Chlorobenzonitrile
3-Chlorobenzonitrile.svg
Names
Other names
meta-Chlorobenzonitrile
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.011.065 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 212-172-6
PubChem CID
  • InChI=1S/C7H4ClN/c8-7-3-1-2-6(4-7)5-9/h1-4H
    Key: WBUOVKBZJOIOAE-UHFFFAOYSA-N
  • C1=CC(=CC(=C1)Cl)C#N
Properties
C7H4ClN
Molar mass 137.57 g·mol−1
Appearancecolorless solid
Melting point 40–41 °C (104–106 °F; 313–314 K) [1]
Hazards
GHS labelling:
GHS-pictogram-skull.svg GHS-pictogram-exclam.svg
Danger
H302, H312, H319
P264, P270, P273, P280, P301+P312, P302+P352, P305+P351+P338, P312, P322, P330, P337+P313, P361, P363, P405, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

3-Chlorobenzonitrile is an organic compound with the chemical formula ClC6H4CN. It is one of the isomers of chlorobenzonitrile.

Preparation and reactions

Typically, aryl nitriles are produced by ammoxidation. [2] 3-Chlorobenzonitrile can also be produced by dehydration of the aldoxime of 3-chlorobenzaldehyde. [3] It can also be produced by heating 3-chlorobenzylamine and iodine in ammonium acetate aqueous solution. [4]

In the presence of copper nanoparticles, 3-chlorobenzonitrile can be reduced by sodium borohydride to 3-chlorobenzylamine. [5] Some ruthenium catalyzers can catalysis the hydrolysis of 3-chlorobenzonitrile to form 3-chlorobenzamide. [6]

Related Research Articles

<span class="mw-page-title-main">Hydrogenation</span> Chemical reaction between molecular hydrogen and another compound or element

Hydrogenation is a chemical reaction between molecular hydrogen (H2) and another compound or element, usually in the presence of a catalyst such as nickel, palladium or platinum. The process is commonly employed to reduce or saturate organic compounds. Hydrogenation typically constitutes the addition of pairs of hydrogen atoms to a molecule, often an alkene. Catalysts are required for the reaction to be usable; non-catalytic hydrogenation takes place only at very high temperatures. Hydrogenation reduces double and triple bonds in hydrocarbons.

In organic chemistry, a nitrile is any organic compound that has a −C≡N functional group. The name of the compound is composed of a base, which includes the carbon of the −C≡N, suffixed with "nitrile", so for example CH3CH2C≡N is called "propionitrile". The prefix cyano- is used interchangeably with the term nitrile in industrial literature. Nitriles are found in many useful compounds, including methyl cyanoacrylate, used in super glue, and nitrile rubber, a nitrile-containing polymer used in latex-free laboratory and medical gloves. Nitrile rubber is also widely used as automotive and other seals since it is resistant to fuels and oils. Organic compounds containing multiple nitrile groups are known as cyanocarbons.

<span class="mw-page-title-main">Nitro compound</span> Organic compound containing an −NO₂ group

In organic chemistry, nitro compounds are organic compounds that contain one or more nitro functional groups. The nitro group is one of the most common explosophores used globally. The nitro group is also strongly electron-withdrawing. Because of this property, C−H bonds alpha (adjacent) to the nitro group can be acidic. For similar reasons, the presence of nitro groups in aromatic compounds retards electrophilic aromatic substitution but facilitates nucleophilic aromatic substitution. Nitro groups are rarely found in nature. They are almost invariably produced by nitration reactions starting with nitric acid.

The Suzuki reaction is an organic reaction, classified as a cross-coupling reaction, where the coupling partners are a boronic acid and an organohalide, and the catalyst is a palladium(0) complex. It was first published in 1979 by Akira Suzuki, and he shared the 2010 Nobel Prize in Chemistry with Richard F. Heck and Ei-ichi Negishi for their contribution to the discovery and development of palladium-catalyzed cross-couplings in organic synthesis. This reaction is also known as the Suzuki–Miyaura reaction or simply as the Suzuki coupling. It is widely used to synthesize polyolefins, styrenes, and substituted biphenyls. Several reviews have been published describing advancements and the development of the Suzuki reaction. The general scheme for the Suzuki reaction is shown below, where a carbon-carbon single bond is formed by coupling a halide (R1-X) with an organoboron species (R2-BY2) using a palladium catalyst and a base. The organoboron species is usually synthesized by hydroboration or carboboration, allowing for rapid generation of molecular complexity.

The Sonogashira reaction is a cross-coupling reaction used in organic synthesis to form carbon–carbon bonds. It employs a palladium catalyst as well as copper co-catalyst to form a carbon–carbon bond between a terminal alkyne and an aryl or vinyl halide.

The azide-alkyne Huisgen cycloaddition is a 1,3-dipolar cycloaddition between an azide and a terminal or internal alkyne to give a 1,2,3-triazole. Rolf Huisgen was the first to understand the scope of this organic reaction. American chemist Karl Barry Sharpless has referred to this cycloaddition as "the cream of the crop" of click chemistry and "the premier example of a click reaction".

<span class="mw-page-title-main">Gold(III) chloride</span> Chemical compound

Gold(III) chloride, traditionally called auric chloride, is an inorganic compound of gold and chlorine with the molecular formula Au2Cl6. The "III" in the name indicates that the gold has an oxidation state of +3, typical for many gold compounds. It has two forms, the monohydrate (AuCl3·H2O) and the anhydrous form, which are both hygroscopic and light-sensitive solids. This compound is a dimer of AuCl3. This compound has a few uses, such as an oxidizing agent and for catalyzing various organic reactions.

The Ullmann reaction or Ullmann coupling, named after Fritz Ullmann, couples two aryl or alkyl groups with the help of copper. The reaction was first reported by Ullmann and his student Bielecki in 1901. It has been later shown that palladium and nickel can also be effectively used.

<span class="mw-page-title-main">Copper(I) iodide</span> Chemical compound

Copper(I) iodide is the inorganic compound with the formula CuI. It is also known as cuprous iodide. It is useful in a variety of applications ranging from organic synthesis to cloud seeding.

Nanomaterial-based catalysts are usually heterogeneous catalysts broken up into metal nanoparticles in order to enhance the catalytic process. Metal nanoparticles have high surface area, which can increase catalytic activity. Nanoparticle catalysts can be easily separated and recycled. They are typically used under mild conditions to prevent decomposition of the nanoparticles.

In electrochemistry, electrosynthesis is the synthesis of chemical compounds in an electrochemical cell. Compared to ordinary redox reactions, electrosynthesis sometimes offers improved selectivity and yields. Electrosynthesis is actively studied as a science and also has industrial applications. Electrooxidation has potential for wastewater treatment as well.

Bioconjugation is a chemical strategy to form a stable covalent link between two molecules, at least one of which is a biomolecule.

Cuprospinel is a mineral. Cuprospinel is an inverse spinel with the chemical formula CuFe2O4, where copper substitutes some of the iron cations in the structure. Its structure is similar to that of magnetite, Fe3O4, yet with slightly different chemical and physical properties due to the presence of copper.

<span class="mw-page-title-main">Hydrogen auto-transfer</span>

Hydrogen auto-transfer, also known as borrowing hydrogen, is the activation of a chemical reaction by temporary transfer of two hydrogen atoms from the reactant to a catalyst and return of those hydrogen atoms back to a reaction intermediate to form the final product. Two major classes of borrowing hydrogen reactions exist: (a) those that result in hydroxyl substitution, and (b) those that result in carbonyl addition. In the former case, alcohol dehydrogenation generates a transient carbonyl compound that is subject to condensation followed by the return of hydrogen. In the latter case, alcohol dehydrogenation is followed by reductive generation of a nucleophile, which triggers carbonyl addition. As borrowing hydrogen processes avoid manipulations otherwise required for discrete alcohol oxidation and the use of stoichiometric organometallic reagents, they typically display high levels of atom-economy and, hence, are viewed as examples of Green chemistry.

<span class="mw-page-title-main">2-Furonitrile</span> Chemical compound

2-Furonitrile is a colorless derivative of furan possessing a nitrile group.

<span class="mw-page-title-main">Copper hydride</span> Chemical compound

Copper hydride is inorganic compound with the chemical formula CuHn where n ~ 0.95. It is a red solid, rarely isolated as a pure composition, that decomposes to the elements. Copper hydride is mainly produced as a reducing agent in organic synthesis and as a precursor to various catalysts.

In chemistry, a fatty amine is loosely defined as any amine possessing a mostly linear hydrocarbon chain of eight or more carbon atoms. They are typically prepared from the more abundant fatty acids, with vegetable or seed-oils being the ultimate starting material. As such they are often mixtures of chain lengths, ranging up to about C22. They can be classified as oleochemicals. Commercially important members include coco amine, oleylamine, tallow amine, and soya amine. These compounds and their derivatives are used as fabric softeners, froth flotation agents, corrosion inhibitors, lubricants and friction modifiers. They are also the basis for a variety of cosmetic formulations.

<span class="mw-page-title-main">Copper nanoparticle</span>

A copper nanoparticle is a copper based particle 1 to 100 nm in size. Like many other forms of nanoparticles, a copper nanoparticle can be prepared by natural processes or through chemical synthesis. These nanoparticles are of particular interest due to their historical application as coloring agents and the biomedical as well as the antimicrobial ones.

The Stahl oxidation is a copper-catalyzed aerobic oxidation of primary and secondary alcohols to aldehydes and ketones. Known for its high selectivity and mild reaction conditions, the Stahl oxidation offers several advantages over classical alcohol oxidations.

<span class="mw-page-title-main">Hydrocupration</span> Chemical reaction

A hydrocupration is a chemical reaction whereby a ligated copper hydride species, reacts with a carbon-carbon or carbon-oxygen pi-system; this insertion is typically thought to occur via a four-membered ring transition state, producing a new copper-carbon or copper-oxygen sigma-bond and a stable (generally) carbon-hydrogen sigma-bond. In the latter instance (copper-oxygen), protonation (protodemetalation) is typical – the former (copper-carbon) has broad utility. The generated copper-carbon bond (organocuprate) has been employed in various nucleophilic additions to polar conjugated and non-conjugated systems and has also been used to forge new carbon-heteroatom bonds.

References

  1. Takashi Keumi; Masakazu Shimada; Toshio Morita; Hidehiko Kitajima (August 1990). "2-(Trifluoroacetyloxy)pyridine as a Mild Trifluoroacetylating Reagent of Amines and Alcohols". Bulletin of the Chemical Society of Japan. 63 (8): 2252–2256. doi:10.1246/bcsj.63.2252. ISSN   0009-2673.
  2. Pollak, Peter; Romeder, Gérard; Hagedorn, Ferdinand; Gelbke, Heinz-Peter (2000). "Nitriles". Ullmann's Encyclopedia of Industrial Chemistry . Weinheim: Wiley-VCH. doi:10.1002/14356007.a17_363.
  3. Stephan Enthaler; Maik Weidauer; Fanny Schröder (February 2012). "Straightforward zinc-catalyzed transformation of aldehydes and hydroxylamine hydrochloride to nitriles". Tetrahedron Letters. 53 (7): 882–885. doi:10.1016/j.tetlet.2011.12.036 . Retrieved 2021-12-20.
  4. Yiming Ren; Shuo Jin (2017-01-01). "Molecular iodine/aqueous NH4OAc: a green reaction system for direct oxidative synthesis of nitriles from amines". Journal of Advanced Oxidation Technologies. 20 (1). doi:10.1515/jaots-2016-0175. ISSN   2371-1175. S2CID   99163202 . Retrieved 2021-12-20.
  5. Asghar Zamani; Ahmad Poursattar Marjani; Abbas Nikoo; Mojtaba Heidarpour; Ahmad Dehghan (2018-03-04). "Synthesis and characterization of copper nanoparticles on walnut shell for catalytic reduction and C-C coupling reaction". Inorganic and Nano-Metal Chemistry. 48 (3): 176–181. doi:10.1080/24701556.2018.1503676. ISSN   2470-1556. S2CID   140005906 . Retrieved 2021-12-20.
  6. Victorio Cadierno; Javier Francos; José Gimeno (2008-07-28). "Selective Ruthenium-Catalyzed Hydration of Nitriles to Amides in Pure Aqueous Medium Under Neutral Conditions". Chemistry - A European Journal. 14 (22): 6601–6605. doi:10.1002/chem.200800847. PMID   18567025 . Retrieved 2021-12-20.