3-Dehydroquinic acid

Last updated
3-Dehydroquinic acid
3-dehydroquinic-acid-Line-Structure.svg
Names
Preferred IUPAC name
(1R,3R,4S)-1,3,4-Trihydroxy-5-oxocyclohexane-1-carboxylic acid
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
PubChem CID
UNII
  • InChI=1S/C7H10O6/c8-3-1-7(13,6(11)12)2-4(9)5(3)10/h3,5,8,10,13H,1-2H2,(H,11,12)/t3-,5+,7-/m1/s1 X mark.svgN
    Key: WVMWZWGZRAXUBK-SYTVJDICSA-N X mark.svgN
  • InChI=1/C7H10O6/c8-3-1-7(13,6(11)12)2-4(9)5(3)10/h3,5,8,10,13H,1-2H2,(H,11,12)/t3-,5+,7-/m1/s1
    Key: WVMWZWGZRAXUBK-SYTVJDICBW
  • O=C1C[C@@](O)([C@@](O)=O)C[C@@H](O)[C@@H]1O
  • O=C1[C@@H](O)[C@H](O)C[C@](O)(C(=O)O)C1
Properties
C7H10O6
Molar mass 190.152 g/mol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

3-Dehydroquinic acid (DHQ) is the first carbocyclic intermediate of the shikimate pathway. [1] It is created from 3-deoxyarabinoheptulosonate 7-phosphate, a 7-carbon ulonic acid, by the enzyme DHQ synthase. The mechanism of ring closure is complex, but involves an aldol condensation at C-2 and C-7.

It has the same structure as quinic acid, which is found in coffee, but the C-3 hydroxyl is oxidized to a ketone group. 3-Dehydroquinic acid undergoes five further enzymatic steps in the remainder of the shikimate pathway to chorismic acid, a precursor to tyrosine, 3-phenylalanine, tryptophan, and some vitamins, including:

3-Dehydroquinate can also be a precursor to pyrroloquinoline quinone (PQQ), an alternate redox coenzyme involved in oxidative phosphorylation.

Biosynthesis

3-Dehydroquinate goes through beta oxidation, similar to fatty acids. Then, this compound (6-oxo-3-dehydro-quinate) is transaminated to 6-amino-3-dehydroquinate. Then 6-amino-3-dehydro-quinate is dehydrated and reduced to 6-amino-4-desoxy-3-keto-quinate, which reacts with dehydroalanine and alpha-ketoglutarate, to form hexahydro-pyrroloquinoline quinone. [2] This compound is oxidized by FAD to PQQ.

Related Research Articles

<span class="mw-page-title-main">Metabolism</span> Set of chemical reactions in organisms

Metabolism is the set of life-sustaining chemical reactions in organisms. The three main purposes of metabolism are: the conversion of the energy in food to energy available to run cellular processes; the conversion of food to building blocks for proteins, lipids, nucleic acids, and some carbohydrates; and the elimination of metabolic wastes. These enzyme-catalyzed reactions allow organisms to grow and reproduce, maintain their structures, and respond to their environments. The word metabolism can also refer to the sum of all chemical reactions that occur in living organisms, including digestion and the transportation of substances into and between different cells, in which case the above described set of reactions within the cells is called intermediary metabolism.

<span class="mw-page-title-main">Aldehyde</span> Organic compound containing the functional group R−CH=O

In organic chemistry, an aldehyde is an organic compound containing a functional group with the structure R−CH=O. The functional group itself can be referred to as an aldehyde but can also be classified as a formyl group. Aldehydes are common and play important roles in the technology and biological spheres.

<span class="mw-page-title-main">Quinoline</span> Chemical compound

Quinoline is a heterocyclic aromatic organic compound with the chemical formula C9H7N. It is a colorless hygroscopic liquid with a strong odor. Aged samples, especially if exposed to light, become yellow and later brown. Quinoline is only slightly soluble in cold water but dissolves readily in hot water and most organic solvents. Quinoline itself has few applications, but many of its derivatives are useful in diverse applications. A prominent example is quinine, an alkaloid found in plants. Over 200 biologically active quinoline and quinazoline alkaloids are identified. 4-Hydroxy-2-alkylquinolines (HAQs) are involved in antibiotic resistance.

The quinones are a class of organic compounds that are formally "derived from aromatic compounds [such as benzene or naphthalene] by conversion of an even number of –CH= groups into –C(=O)– groups with any necessary rearrangement of double bonds, resulting in "a fully conjugated cyclic dione structure". The archetypical member of the class is 1,4-benzoquinone or cyclohexadienedione, often called simply "quinone". Other important examples are 1,2-benzoquinone (ortho-quinone), 1,4-naphthoquinone and 9,10-anthraquinone.

<span class="mw-page-title-main">Nicotinamide adenine dinucleotide</span> Chemical compound which is reduced and oxidized

Nicotinamide adenine dinucleotide (NAD) is a coenzyme central to metabolism. Found in all living cells, NAD is called a dinucleotide because it consists of two nucleotides joined through their phosphate groups. One nucleotide contains an adenine nucleobase and the other nicotinamide. NAD exists in two forms: an oxidized and reduced form, abbreviated as NAD+ and NADH (H for hydrogen), respectively.

<span class="mw-page-title-main">Pyrroloquinoline quinone</span> Chemical compound

Pyrroloquinoline quinone (PQQ), also called methoxatin, is a redox cofactor and antioxidant. Produced by bacteria, it is found in soil and foods such as kiwifruit, as well as human breast milk. Enzymes using PQQ as a redox cofactor are called quinoproteins and play a variety of redox roles. Quinoprotein glucose dehydrogenase is used a glucose sensor in bacteria. PQQ stimulates growth in bacteria. Eukaryote targets, including mammalian lactate dehydrogenase, are of more interest to health. It is suggested that PQQ taken as a dietary supplement could promote mitochondrial biogenesis via this pathway as well as PGC-1α.

Shikimic acid, more commonly known as its anionic form shikimate, is a cyclohexene, a cyclitol and a cyclohexanecarboxylic acid. It is an important biochemical metabolite in plants and microorganisms. Its name comes from the Japanese flower shikimi, from which it was first isolated in 1885 by Johan Fredrik Eykman. The elucidation of its structure was made nearly 50 years later.

<span class="mw-page-title-main">Mitomycins</span>

The mitomycins are a family of aziridine-containing natural products isolated from Streptomyces caespitosus or Streptomyces lavendulae. They include mitomycin A, mitomycin B, and mitomycin C. When the name mitomycin occurs alone, it usually refers to mitomycin C, its international nonproprietary name. Mitomycin C is used as a medicine for treating various disorders associated with the growth and spread of cells.

<span class="mw-page-title-main">Cyanidin</span> Anthocyanidin pigment in flowering plant petals and fruits

Cyanidin is a natural organic compound. It is a particular type of anthocyanidin. It is a pigment found in many red berries including grapes, bilberry, blackberry, blueberry, cherry, chokeberry, cranberry, elderberry, hawthorn, loganberry, açai berry and raspberry. It can also be found in other fruits such as apples and plums, and in red cabbage and red onion. It has a characteristic reddish-purple color, though this can change with pH; solutions of the compound are red at pH < 3, violet at pH 7-8, and blue at pH > 11. In certain fruits, the highest concentrations of cyanidin are found in the seeds and skin. Cyanidin has been found to be a potent sirtuin 6 (SIRT6) activator.

<span class="mw-page-title-main">Phenazine</span> Chemical compound

Phenazine is an organic compound with the formula (C6H4)2N2. It is a dibenzo annulated pyrazine, and the parent substance of many dyestuffs, such as the toluylene red, indulines, and safranines (and the closely related eurhodines). Phenazine crystallizes in yellow needles, which are only sparingly soluble in alcohol. Sulfuric acid dissolves it, forming a deep-red solution.

<span class="mw-page-title-main">Apigenin</span> Chemical compound

Apigenin (4′,5,7-trihydroxyflavone), found in many plants, is a natural product belonging to the flavone class that is the aglycone of several naturally occurring glycosides. It is a yellow crystalline solid that has been used to dye wool.

In enzymology, a pyrroloquinoline-quinone synthase (EC 1.3.3.11) is an enzyme that catalyzes the chemical reaction

In enzymology, a quinoprotein glucose dehydrogenase is an enzyme that catalyzes the chemical reaction

In enzymology, an aldehyde dehydrogenase (pyrroloquinoline-quinone) (EC 1.2.99.3) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">3-dehydroquinate dehydratase</span> Class of enzymes

The enzyme 3-dehydroquinate dehydratase (EC 4.2.1.10) catalyzes the chemical reaction

<span class="mw-page-title-main">3-dehydroquinate synthase</span>

The enzyme 3-dehydroquinate synthase catalyzes the chemical reaction

<span class="mw-page-title-main">Shikimate kinase</span>

Shikimate kinase is an enzyme that catalyzes the ATP-dependent phosphorylation of shikimate to form shikimate 3-phosphate. This reaction is the fifth step of the shikimate pathway, which is used by plants and bacteria to synthesize the common precursor of aromatic amino acids and secondary metabolites. The systematic name of this enzyme class is ATP:shikimate 3-phosphotransferase. Other names in common use include shikimate kinase (phosphorylating), and shikimate kinase II.

<span class="mw-page-title-main">Shikimate pathway</span> Biosynthetic Pathway

The shikimate pathway is a seven-step metabolic pathway used by bacteria, archaea, fungi, algae, some protozoans, and plants for the biosynthesis of folates and aromatic amino acids. This pathway is not found in animal cells.

Quinate dehydrogenase (quinone) (EC 1.1.5.8, NAD(P)+-independent quinate dehydrogenase, quinate:pyrroloquinoline-quinone 5-oxidoreductase) is an enzyme with systematic name quinate:quinol 3-oxidoreductase. This enzyme catalyses the following chemical reaction

Mycofactocin (MFT) is a family of small molecules derived from a peptide of the type known as RiPP (ribosomally synthesized and post-translationally modified peptides), naturally occurring in many types of Mycobacterium. It was discovered in a bioinformatics study in 2011. All mycofactocins share a precursor in the form of premycofactocin (PMFT); they differ by the cellulose tail added. Being redox active, both PMFT and MFT have an oxidized dione (mycofactocinone) form and a reduced diol (mycofactocinol) form, respectively termed PMFTH2 and MFTH2.

References

  1. Morrow, Gary W. (2016). "The Shikimate Pathway: Biosynthesis of Phenolic Products from Shikimic Acid". Oxford University Press. doi:10.1093/oso/9780199860531.001.0001. ISBN   978-0-19-986053-1 . Retrieved 2022-09-14.
  2. Peón, Antonio; Otero, José M.; Tizón, Lorena; Prazeres, Verónica F. V.; Llamas-Saiz, Antonio L.; Fox, Gavin C.; van Raaij, Mark J.; Lamb, Heather; Hawkins, Alastair R.; Gago, Federico; Castedo, Luis; González-Bello, Concepción (2010-09-02). "Understanding the Key Factors that Control the Inhibition of Type II Dehydroquinase by (2R)-2-Benzyl-3-dehydroquinic Acids". ChemMedChem. 5 (10): 1726–1733. doi:10.1002/cmdc.201000281. PMID   20815012. S2CID   13587154.