3-Deoxyglucosone

Last updated
3-Deoxyglucosone
3-Deoxyglucosone.svg
Names
IUPAC name
3-Deoxy-D-erythro-hexos-2-ulose
Systematic IUPAC name
(4S,5R)-4,5,6-Trihydroxy-2-oxohexanal
Other names
3-Deoxy-D-erythro-hexosulose; 2-Keto-3-deoxyglucose; 3-Deoxy-D-erythro-hexosulose; 3-Deoxy-D-glucosone; D-3-Deoxyglucosone
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.241.539 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
UNII
  • InChI=1S/C6H10O5/c7-2-4(9)1-5(10)6(11)3-8/h2,5-6,8,10-11H,1,3H2/t5-,6+/m0/s1 Yes check.svgY
    Key: ZGCHLOWZNKRZSN-NTSWFWBYSA-N Yes check.svgY
  • InChI=1/C6H10O5/c7-2-4(9)1-5(10)6(11)3-8/h2,5-6,8,10-11H,1,3H2/t5-,6+/m0/s1
    Key: ZGCHLOWZNKRZSN-NTSWFWBYBM
  • C(C(C(CO)O)O)C(=O)C=O
  • O=C(C=O)C[C@H](O)[C@H](O)CO
Properties
C6H10O5
Molar mass 162.141 g·mol−1
Density 1.406 g/ml
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

3-Deoxyglucosone (3DG) is a sugar that is notable because it is a marker for diabetes. 3DG reacts with protein to form advanced glycation end-products (AGEs), which contribute to diseases such as the vascular complications of diabetes, atherosclerosis, hypertension, Alzheimer's disease, inflammation, and aging. [1]

Contents

Biosynthesis

4-Imidazolone arise from the condensation of arginine residues and 3-deoxyglucosone (R = CH2CH(OH)CH(OH)CH2OH). HydroimidazoloneAGE.png
4-Imidazolone arise from the condensation of arginine residues and 3-deoxyglucosone (R = CH2CH(OH)CH(OH)CH2OH).

3DG is made naturally via the Maillard reaction. It forms after glucose reacts with primary amino groups of lysine or arginine found in proteins. Because of the increased concentration of the reactant glucose, more 3DG forms with excessive blood sugar levels, as in uncontrolled diabetes. Glucose reacts non-enzymatically with protein amino groups to initiate glycation. The formation of 3DG may account for the numerous complications of diabetes as well as aging. [1]

3DG arises also via the degradation of fructose 3-phosphate (F3P). [3] 3DG plays a central role in the development of diabetic complications via the action of fructosamine-3-kinase.[ citation needed ]

Biochemistry

As a dicarbonyl sugar, i.e. one with the grouping R-C(O)-C(O)-R, 3DG is highly reactive toward amine groups. Amines are common in amino acids as well as some nucleic acids. The products from the reaction of 3DG with protein amino groups are called advanced glycation end-products (AGEs). AGEs include imidazolones, pyrraline, N6-(carboxymethyl)lysine, and pentosidine. 3DG as well as AGEs play a role in the modification and cross-linking of long-lived proteins such as crystallin and collagen, contributing to diseases such as the vascular complications of diabetes, atherosclerosis, hypertension, Alzheimer's disease, inflammation, and aging. [1]

3DG has a variety of potential biological effects, particularly when it is present at elevated concentrations in diabetic states:

3DG and ROS

3DG induces reactive oxygen species (ROS) that contribute to the development of diabetic complications. [14] Specifically, 3DG induces heparin-binding epidermal growth factor, a smooth muscle mitogen that is abundant in atherosclerotic plaques. This observation suggests that an increase in 3DG may trigger atherogenesis in diabetes. [15] [16] 3DG also inactivates some enzymes that protect cells from ROS. For example, glutathione peroxidase, a central antioxidant enzyme that uses glutathione to remove ROS, and glutathione reductase, which regenerates glutathione, are both inactivated by 3DG. [17] [18] Diabetic humans show increased oxidative stress. [19] 3DG-induced ROS result in oxidative DNA damage. [20] 3DG can be internalized by cells and internalized 3DG is responsible for the production of intracellular oxidative stress. [21]

Detoxification

Although of uncertain medical significance, a variety of compounds react with 3DG, possibly deactivating it. One such agent is aminoguanidine (AG). [22] AG reduces AGE associated retinal, neural, arterial, and renal pathologies in animal models. [23] [24] [25] [26] The problem with AG is that it is toxic in the quantities needed for efficacy.[ citation needed ]

Additional reading

Related Research Articles

<span class="mw-page-title-main">Glutathione</span> Ubiquitous antioxidant compound in living organisms

Glutathione is an antioxidant in plants, animals, fungi, and some bacteria and archaea. Glutathione is capable of preventing damage to important cellular components caused by sources such as reactive oxygen species, free radicals, peroxides, lipid peroxides, and heavy metals. It is a tripeptide with a gamma peptide linkage between the carboxyl group of the glutamate side chain and cysteine. The carboxyl group of the cysteine residue is attached by normal peptide linkage to glycine.

Glycated hemoglobin is a form of hemoglobin (Hb) that is chemically linked to a sugar. Most monosaccharides, including glucose, galactose and fructose, spontaneously bond with hemoglobin when present in the bloodstream. However, glucose is only 21% as likely to do so as galactose and 13% as likely to do so as fructose, which may explain why glucose is used as the primary metabolic fuel in humans.

Glycation is the covalent attachment of a sugar to a protein, lipid or nucleic acid molecule. Typical sugars that participate in glycation are glucose, fructose, and their derivatives. Glycation is the non-enzymatic process responsible for many complications in diabetes mellitus and is implicated in some diseases and in aging. Glycation end products are believed to play a causative role in the vascular complications of diabetes mellitus.

Advanced glycation end products (AGEs) are proteins or lipids that become glycated as a result of exposure to sugars. They are a bio-marker implicated in aging and the development, or worsening, of many degenerative diseases, such as diabetes, atherosclerosis, chronic kidney disease, and Alzheimer's disease.

<span class="mw-page-title-main">Diabetic nephropathy</span> Chronic loss of kidney function

Diabetic nephropathy, also known as diabetic kidney disease, is the chronic loss of kidney function occurring in those with diabetes mellitus. Diabetic nephropathy is the leading causes of chronic kidney disease (CKD) and end-stage renal disease (ESRD) globally. The triad of protein leaking into the urine, rising blood pressure with hypertension and then falling renal function is common to many forms of CKD. Protein loss in the urine due to damage of the glomeruli may become massive, and cause a low serum albumin with resulting generalized body swelling (edema) so called nephrotic syndrome. Likewise, the estimated glomerular filtration rate (eGFR) may progressively fall from a normal of over 90 ml/min/1.73m2 to less than 15, at which point the patient is said to have end-stage renal disease. It usually is slowly progressive over years.

<span class="mw-page-title-main">Methylglyoxal</span> Chemical compound

Methylglyoxal (MGO) is the organic compound with the formula CH3C(O)CHO. It is a reduced derivative of pyruvic acid. It is a reactive compound that is implicated in the biology of diabetes. Methylglyoxal is produced industrially by degradation of carbohydrates using overexpressed methylglyoxal synthase.

Diabetic angiopathy is a form of angiopathy associated with diabetic complications. While not exclusive, the two most common forms are diabetic retinopathy and diabetic nephropathy, whose pathophysiologies are largely identical. Other forms of diabetic angiopathy include diabetic neuropathy and diabetic cardiomyopathy.

<span class="mw-page-title-main">Glutathione reductase</span> Enzyme

Glutathione reductase (GR) also known as glutathione-disulfide reductase (GSR) is an enzyme that in humans is encoded by the GSR gene. Glutathione reductase catalyzes the reduction of glutathione disulfide (GSSG) to the sulfhydryl form glutathione (GSH), which is a critical molecule in resisting oxidative stress and maintaining the reducing environment of the cell. Glutathione reductase functions as dimeric disulfide oxidoreductase and utilizes an FAD prosthetic group and NADPH to reduce one molar equivalent of GSSG to two molar equivalents of GSH:

The polyol pathway is a two-step process that converts glucose to fructose. In this pathway glucose is reduced to sorbitol, which is subsequently oxidized to fructose. It is also called the sorbitol-aldose reductase pathway.

<span class="mw-page-title-main">Aldose reductase</span> Enzyme

In enzymology, aldose reductase is a cytosolic NADPH-dependent oxidoreductase that catalyzes the reduction of a variety of aldehydes and carbonyls, including monosaccharides. It is primarily known for catalyzing the reduction of glucose to sorbitol, the first step in polyol pathway of glucose metabolism.

The glyoxalase system is a set of enzymes that carry out the detoxification of methylglyoxal and the other reactive aldehydes that are produced as a normal part of metabolism. This system has been studied in both bacteria and eukaryotes. This detoxification is accomplished by the sequential action of two thiol-dependent enzymes; firstly glyoxalase І, which catalyzes the isomerization of the spontaneously formed hemithioacetal adduct between glutathione and 2-oxoaldehydes into S-2-hydroxyacylglutathione. Secondly, glyoxalase ІІ hydrolyses these thiolesters and in the case of methylglyoxal catabolism, produces D-lactate and GSH from S-D-lactoyl-glutathione.

<span class="mw-page-title-main">Pentosidine</span> Chemical compound

Pentosidine is a biomarker for advanced glycation endproducts, or AGEs. It is a well characterized and easily detected member of this large class of compounds.

<span class="mw-page-title-main">AKR1B1</span> Protein-coding gene in the species Homo sapiens

Aldo-keto reductase family 1, member B1 (AKR1B1), also known as aldose reductase, is an enzyme that is encoded by the AKR1B1 gene in humans. It is a reduced nicotinamide-adenine dinucleotide phosphate (NADPH)-dependent enzyme catalyzing the reduction of various aldehydes and ketones to the corresponding alcohol. The involvement of AKR1B1 in oxidative stress diseases, cell signal transduction, and cell proliferation process endows AKR1B1 with potential as a therapeutic target.

<span class="mw-page-title-main">AOC3</span> Enzyme

Amine oxidase, copper containing 3 (AOC3), also known as vascular adhesion protein (VAP-1) and HPAO is an enzyme that in humans is encoded by the AOC3 gene on chromosome 17. This protein is a member of the semicarbazide-sensitive amine oxidase family of enzymes and is associated with many vascular diseases.

<span class="mw-page-title-main">Aldo-keto reductase family 1, member A1</span> Mammalian protein found in Homo sapiens

Alcohol dehydrogenase [NADP+] also known as aldehyde reductase or aldo-keto reductase family 1 member A1 is an enzyme that in humans is encoded by the AKR1A1 gene. AKR1A1 belongs to the aldo-keto reductase (AKR) superfamily. It catalyzes the NADPH-dependent reduction of a variety of aromatic and aliphatic aldehydes to their corresponding alcohols and catalyzes the reduction of mevaldate to mevalonic acid and of glyceraldehyde to glycerol. Mutations in the AKR1A1 gene has been found associated with non-Hodgkin's lymphoma.

<span class="mw-page-title-main">Fructosamine-3-kinase</span> Protein-coding gene in the species Homo sapiens

Fructosamine-3-kinase is an enzyme that in humans is encoded by the FN3K gene.

<span class="mw-page-title-main">Diabetic cardiomyopathy</span> Medical condition

Diabetic cardiomyopathy is a disorder of the heart muscle in people with diabetes. It can lead to inability of the heart to circulate blood through the body effectively, a state known as heart failure(HF), with accumulation of fluid in the lungs or legs. Most heart failure in people with diabetes results from coronary artery disease, and diabetic cardiomyopathy is only said to exist if there is no coronary artery disease to explain the heart muscle disorder.

Complications of diabetes are secondary diseases that are a result of elevated blood glucose levels that occur in diabetic patients. These complications can be divided into two types: acute and chronic. Acute complications are complications that develop rapidly and can be exemplified as diabetic ketoacidosis (DKA), hyperglycemic hyperosmolar state (HHS), lactic acidosis (LA), and hypoglycemia. Chronic complications develop over time and are generally classified in two categories: microvascular and macrovascular. Microvascular complications include neuropathy, nephropathy, and retinopathy; while cardiovascular disease, stroke, and peripheral vascular disease are included in the macrovascular complications.

Pseudohypoxia refers to a condition that mimics hypoxia, by having sufficient oxygen yet impaired mitochondrial respiration due to a deficiency of necessary co-enzymes, such as NAD+ and TPP. The increased cytosolic ratio of free NADH/NAD+ in cells (more NADH than NAD+) can be caused by diabetic hyperglycemia and by excessive alcohol consumption. Low levels of TPP results from thiamine deficiency.

<span class="mw-page-title-main">Argpyrimidine</span> Chemical compound

Argpyrimidine is an organic compound with the chemical formula C11H18N4O3. It is an advanced glycation end-product formed from arginine and methylglyoxal through the Maillard reaction. Argpyrimidine has been studied for its food chemistry purposes and its potential involvement in aging diseases and Diabetes Mellius.

References

  1. 1 2 3 4 Niwa T (1999). "3-Deoxyglucosone: Metabolism, analysis, biological activity, and clinical implication". Journal of Chromatography B: Biomedical Sciences and Applications. 731 (1): 23–36. doi:10.1016/S0378-4347(99)00113-9. PMID   10491986.
  2. Bellier J, Nokin M, Lardé E, Karoyan P, Peulen O, Castronovo V, Bellahcène A (2019). "Methylglyoxal, a Potent Inducer of AGEs, Connects between Diabetes and Cancer". Diabetes Research and Clinical Practice. 148: 200–211. doi:10.1016/j.diabres.2019.01.002. PMID   30664892. S2CID   58631777.
  3. Szwergold BS, Kappler F, Brown TR (January 1990). "Identification of fructose 3-phosphate in the lens of diabetic rats". Science. 247 (4941): 451–4. Bibcode:1990Sci...247..451S. doi:10.1126/science.2300805. PMID   2300805.
  4. Kusunoki H, Miyata S, Ohara T, Liu BF, Uriuhara A, Kojima H, Suzuki K, Miyazaki H, Yamashita Y, Inaba K, Kasuga M (June 2003). "Relation between serum 3-deoxyglucosone and development of diabetic microangiopathy". Diabetes Care. 26 (6): 1889–94. doi: 10.2337/diacare.26.6.1889 . PMID   12766129.
  5. Wells-Knecht KJ, Lyons TJ, McCance DR, Thorpe SR, Feather MS, Baynes JW (September 1994). "3-Deoxyfructose concentrations are increased in human plasma and urine in diabetes". Diabetes. 43 (9): 1152–6. doi:10.2337/diabetes.43.9.1152. PMID   8070616.
  6. Kappler F, Schwartz ML, Su B, Tobia AM, Brown T (2001). "DYN 12, a small molecule inhibitor of the enzyme amadorase, lowers plasma 3-deoxyglucosone levels in diabetic rats". Diabetes Technology & Therapeutics. 3 (4): 609–16. doi:10.1089/15209150152811234. PMID   11911173.
  7. Beisswenger PJ, Drummond KS, Nelson RG, Howell SK, Szwergold BS, Mauer M (November 2005). "Susceptibility to diabetic nephropathy is related to dicarbonyl and oxidative stress". Diabetes. 54 (11): 3274–81. doi: 10.2337/diabetes.54.11.3274 . PMID   16249455.
  8. Takahashi M, Lu YB, Myint T, Fujii J, Wada Y, Taniguchi N (January 1995). "In vivo glycation of aldehyde reductase, a major 3-deoxyglucosone reducing enzyme: identification of glycation sites". Biochemistry. 34 (4): 1433–8. doi:10.1021/bi00004a038. PMID   7827091.
  9. Lal S, Kappler F, Walker M, Orchard TJ, Beisswenger PJ, Szwergold BS, Brown TR (June 1997). "Quantitation of 3-deoxyglucosone levels in human plasma". Archives of Biochemistry and Biophysics. 342 (2): 254–60. doi:10.1006/abbi.1997.0117. PMID   9186486.
  10. Eriksson UJ, Wentzel P, Minhas HS, Thornalley PJ (December 1998). "Teratogenicity of 3-deoxyglucosone and diabetic embryopathy". Diabetes. 47 (12): 1960–6. doi:10.2337/diabetes.47.12.1960. PMID   9836531.
  11. Okado A, Kawasaki Y, Hasuike Y, Takahashi M, Teshima T, Fujii J, Taniguchi N (August 1996). "Induction of apoptotic cell death by methylglyoxal and 3-deoxyglucosone in macrophage-derived cell lines". Biochemical and Biophysical Research Communications. 225 (1): 219–24. doi:10.1006/bbrc.1996.1157. PMID   8769121.
  12. Kikuchi S, Shinpo K, Moriwaka F, Makita Z, Miyata T, Tashiro K (July 1999). "Neurotoxicity of methylglyoxal and 3-deoxyglucosone on cultured cortical neurons: synergism between glycation and oxidative stress, possibly involved in neurodegenerative diseases". Journal of Neuroscience Research. 57 (2): 280–9. doi:10.1002/(SICI)1097-4547(19990715)57:2<280::AID-JNR14>3.0.CO;2-U. PMID   10398306. S2CID   39613521.
  13. Suzuki K, Koh YH, Mizuno H, Hamaoka R, Taniguchi N (February 1998). "Overexpression of aldehyde reductase protects PC12 cells from the cytotoxicity of methylglyoxal or 3-deoxyglucosone". Journal of Biochemistry. 123 (2): 353–7. doi:10.1093/oxfordjournals.jbchem.a021944. PMID   9538214.
  14. Araki A (September 1997). "[Oxidative stress and diabetes mellitus: a possible role of alpha-dicarbonyl compounds in free radical formation]". Nihon Ronen Igakkai Zasshi. Japanese Journal of Geriatrics. 34 (9): 716–20. PMID   9430981.
  15. Taniguchi N, Kaneto H, Asahi M, Takahashi M, Wenyi C, Higashiyama S, Fujii J, Suzuki K, Kayanoki Y (July 1996). "Involvement of glycation and oxidative stress in diabetic macroangiopathy". Diabetes. 45 (Suppl 3): S81-3. doi:10.2337/diab.45.3.s81. PMID   8674900. S2CID   21268446.
  16. Che W, Asahi M, Takahashi M, Kaneto H, Okado A, Higashiyama S, Taniguchi N (July 1997). "Selective induction of heparin-binding epidermal growth factor-like growth factor by methylglyoxal and 3-deoxyglucosone in rat aortic smooth muscle cells. The involvement of reactive oxygen species formation and a possible implication for atherogenesis in diabetes". The Journal of Biological Chemistry. 272 (29): 18453–9. doi: 10.1074/jbc.272.29.18453 . PMID   9218489.
  17. Vander Jagt DL, Hunsaker LA, Vander Jagt TJ, Gomez MS, Gonzales DM, Deck LM, Royer RE (April 1997). "Inactivation of glutathione reductase by 4-hydroxynonenal and other endogenous aldehydes". Biochemical Pharmacology. 53 (8): 1133–40. doi:10.1016/S0006-2952(97)00090-7. PMID   9175718.
  18. Niwa T, Tsukushi S (February 2001). "3-deoxyglucosone and AGEs in uremic complications: inactivation of glutathione peroxidase by 3-deoxyglucosone". Kidney International Supplements. 78: S37-41. doi: 10.1046/j.1523-1755.2001.59780037.x . PMID   11168980.
  19. Feillet-Coudray C, Choné F, Michel F, Rock E, Thiéblot P, Rayssiguier Y, Tauveron I, Mazur A (October 2002). "Divergence in plasmatic and urinary isoprostane levels in type 2 diabetes". Clinica Chimica Acta; International Journal of Clinical Chemistry. 324 (1–2): 25–30. doi:10.1016/S0009-8981(02)00213-9. PMID   12204421.
  20. Shimoi K, Okitsu A, Green MH, Lowe JE, Ohta T, Kaji K, Terato H, Ide H, Kinae N (September 2001). "Oxidative DNA damage induced by high glucose and its suppression in human umbilical vein endothelial cells". Mutation Research. 480–481: 371–8. doi:10.1016/S0027-5107(01)00196-8. PMID   11506829.
  21. Sakiyama H, Takahashi M, Yamamoto T, Teshima T, Lee SH, Miyamoto Y, Misonou Y, Taniguchi N (February 2006). "The internalization and metabolism of 3-deoxyglucosone in human umbilical vein endothelial cells". Journal of Biochemistry. 139 (2): 245–53. doi:10.1093/jb/mvj017. PMID   16452312.
  22. Brownlee M (June 1994). "Lilly Lecture 1993. Glycation and diabetic complications". Diabetes. 43 (6): 836–41. doi:10.2337/diab.43.6.836. PMID   8194672. S2CID   84490567.
  23. Ellis EN, Good BH (October 1991). "Prevention of glomerular basement membrane thickening by aminoguanidine in experimental diabetes mellitus". Metabolism. 40 (10): 1016–9. doi:10.1016/0026-0495(91)90122-D. PMID   1943726.
  24. Soulis-Liparota T, Cooper M, Papazoglou D, Clarke B, Jerums G (October 1991). "Retardation by aminoguanidine of development of albuminuria, mesangial expansion, and tissue fluorescence in streptozocin-induced diabetic rat". Diabetes. 40 (10): 1328–34. doi:10.2337/diabetes.40.10.1328. PMID   1834497.
  25. Edelstein D, Brownlee M (January 1992). "Aminoguanidine ameliorates albuminuria in diabetic hypertensive rats". Diabetologia. 35 (1): 96–7. doi: 10.1007/BF00400859 . PMID   1541387.
  26. Brownlee M, Vlassara H, Kooney A, Ulrich P, Cerami A (June 1986). "Aminoguanidine prevents diabetes-induced arterial wall protein cross-linking". Science. 232 (4758): 1629–32. Bibcode:1986Sci...232.1629B. doi:10.1126/science.3487117. PMID   3487117.