AH receptor-interacting protein

Last updated
AIP
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases AIP , ARA9, FKBP16, FKBP37, SMTPHN, XAP-2, XAP2, aryl hydrocarbon receptor interacting protein, PITA1
External IDs OMIM: 605555 MGI: 109622 HomoloGene: 2959 GeneCards: AIP
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_003977
NM_001302959
NM_001302960

NM_001276284
NM_016666

RefSeq (protein)

NP_001289888
NP_001289889
NP_003968

NP_001263213
NP_057875

Location (UCSC) Chr 11: 67.47 – 67.49 Mb Chr 19: 4.16 – 4.18 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

AH receptor-interacting protein (AIP) also known as aryl hydrocarbon receptor-interacting protein, immunophilin homolog ARA9, or HBV X-associated protein 2 (XAP-2) is a protein that in humans is encoded by the AIP gene. [5] [6] [7] The protein is a member of the FKBP family.

Contents

Function

AIP may play a positive role in aryl hydrocarbon receptor-mediated signalling possibly by influencing its receptivity for ligand and/or its nuclear targeting. AIP is the cellular negative regulator of the hepatitis B virus (HBV) X protein. [5] Further, it's been known to suppress antiviral signaling and the induction of type I interferon by targeting IRF7, a key player in the antiviral signal pathways. [8] AIP consists of an N-terminal FKBP52 like domain and a C-terminal TPR domain. [9]

Mutations and role in disease

AIP mutations may be the cause of a familial form of acromegaly, familial isolated pituitary adenoma (FIPA). Somatotropinomas (i.e. GH-producing pituitary adenomas), sometimes associated with prolactinomas, are present in most AIP mutated patients. [10]

Interactions

AIP has been shown to interact with the aryl hydrocarbon receptor, [7] [11] [12] peroxisome proliferator-activated receptor alpha [13] and the aryl hydrocarbon receptor nuclear translocator. [7] [14] Further, it has shown that AIP can interact with IRF7 to exert its novel function of negatively regulating antiviral signal pathways. [8]

Related Research Articles

<span class="mw-page-title-main">Aryl hydrocarbon receptor</span> Vertebrate transcription factor

The aryl hydrocarbon receptor is a protein that in humans is encoded by the AHR gene. The aryl hydrocarbon receptor is a transcription factor that regulates gene expression. It was originally thought to function primarily as a sensor of xenobiotic chemicals and also as the regulator of enzymes such as cytochrome P450s that metabolize these chemicals. The most notable of these xenobiotic chemicals are aromatic (aryl) hydrocarbons from which the receptor derives its name.

<span class="mw-page-title-main">Aryl hydrocarbon receptor nuclear translocator</span> Protein-coding gene in the species Homo sapiens

The ARNT gene encodes the aryl hydrocarbon receptor nuclear translocator protein that forms a complex with ligand-bound aryl hydrocarbon receptor (AhR), and is required for receptor function. The encoded protein has also been identified as the beta subunit of a heterodimeric transcription factor, hypoxia-inducible factor 1 (HIF1). A t(1;12)(q21;p13) translocation, which results in a TEL-ARNT fusion protein, is associated with acute myeloblastic leukemia. Three alternatively spliced variants encoding different isoforms have been described for this gene.

The aryl-hydrocarbon receptor repressor also known as AHRR is a human gene.

<span class="mw-page-title-main">GRB10</span>

Growth factor receptor-bound protein 10 also known as insulin receptor-binding protein Grb-IR is a protein that in humans is encoded by the GRB10 gene.

<span class="mw-page-title-main">Lymphotoxin beta receptor</span>

Lymphotoxin beta receptor (LTBR), also known as tumor necrosis factor receptor superfamily member 3 (TNFRSF3), is a cell surface receptor for lymphotoxin involved in apoptosis and cytokine release. It is a member of the tumor necrosis factor receptor superfamily.

<span class="mw-page-title-main">Nuclear receptor coactivator 2</span> Protein-coding gene in the species Homo sapiens

The nuclear receptor coactivator 2 also known as NCoA-2 is a protein that in humans is encoded by the NCOA2 gene. NCoA-2 is also frequently called glucocorticoid receptor-interacting protein 1 (GRIP1), steroid receptor coactivator-2 (SRC-2), or transcriptional mediators/intermediary factor 2 (TIF2).

NPAS1 is a basic helix-loop-helix transcription factor.

<span class="mw-page-title-main">Retinoid X receptor alpha</span> Protein-coding gene in the species Homo sapiens

Retinoid X receptor alpha (RXR-alpha), also known as NR2B1 is a nuclear receptor that in humans is encoded by the RXRA gene.

<span class="mw-page-title-main">Peroxisome proliferator-activated receptor alpha</span> Protein-coding gene in the species Homo sapiens

Peroxisome proliferator-activated receptor alpha (PPAR-α), also known as NR1C1, is a nuclear receptor protein functioning as a transcription factor that in humans is encoded by the PPARA gene. Together with peroxisome proliferator-activated receptor delta and peroxisome proliferator-activated receptor gamma, PPAR-alpha is part of the subfamily of peroxisome proliferator-activated receptors. It was the first member of the PPAR family to be cloned in 1990 by Stephen Green and has been identified as the nuclear receptor for a diverse class of rodent hepatocarcinogens that causes proliferation of peroxisomes.

<span class="mw-page-title-main">NRIP1</span> Protein-coding gene in the species Homo sapiens

Nuclear receptor-interacting protein 1 (NRIP1) also known as receptor-interacting protein 140 (RIP140) is a protein that in humans is encoded by the NRIP1 gene.

<span class="mw-page-title-main">PTGES3</span>

Prostaglandin E synthase 3 (cytosolic) is an enzyme that in humans is encoded by the PTGES3 gene.

<span class="mw-page-title-main">YWHAE</span>

14-3-3 protein epsilon is a protein that in humans is encoded by the YWHAE gene.

<span class="mw-page-title-main">CD81</span>

CD81 molecule, also known as CD81, is a protein which in humans is encoded by the CD81 gene. It is also known as 26 kDa cell surface protein, TAPA-1, and Tetraspanin-28 (Tspan-28).

<span class="mw-page-title-main">Protein inhibitor of activated STAT2</span>

E3 SUMO-protein ligase PIAS2 is an enzyme that in humans is encoded by the PIAS2 gene.

<span class="mw-page-title-main">Poliovirus receptor-related 1</span>

Poliovirus receptor-related 1 (PVRL1), also known as nectin-1 and CD111 (formerly herpesvirus entry mediator C, HVEC) is a human protein of the immunoglobulin superfamily (IgSF), also considered a member of the nectins. It is a membrane protein with three extracellular immunoglobulin domains, a single transmembrane helix and a cytoplasmic tail. The protein can mediate Ca2+-independent cellular adhesion further characterizing it as IgSF cell adhesion molecule (IgSF CAM).

<span class="mw-page-title-main">AKAP5</span> Protein-coding gene in the species Homo sapiens

A-kinase anchor protein 5 is a protein that in humans is encoded by the AKAP5 gene.

<span class="mw-page-title-main">NCOA6</span>

Nuclear receptor coactivator 6 is a protein that in humans is encoded by the NCOA6 gene.

<span class="mw-page-title-main">GTF2F2</span> Protein-coding gene in the species Homo sapiens

General transcription factor IIF subunit 2 is a protein that in humans is encoded by the GTF2F2 gene.

<span class="mw-page-title-main">NS2 (HCV)</span>

Nonstructural protein 2 (NS2) is a viral protein found in the hepatitis C virus. It is also produced by influenza viruses, and is alternatively known as the nuclear export protein (NEP).

<span class="mw-page-title-main">Asialoglycoprotein receptor 1</span> Protein-coding gene in the species Homo sapiens

Asialoglycoprotein receptor 1 is a protein that in humans is encoded by the ASGR1 gene.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000110711 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000024847 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. 1 2 "Entrez Gene: AIP aryl hydrocarbon receptor interacting protein".
  6. Kuzhandaivelu N, Cong YS, Inouye C, Yang WM, Seto E (December 1996). "XAP2, a novel hepatitis B virus X-associated protein that inhibits X transactivation". Nucleic Acids Res. 24 (23): 4741–50. doi:10.1093/nar/24.23.4741. PMC   146319 . PMID   8972861.
  7. 1 2 3 Carver LA, Bradfield CA (April 1997). "Ligand-dependent interaction of the aryl hydrocarbon receptor with a novel immunophilin homolog in vivo". J. Biol. Chem. 272 (17): 11452–6. doi: 10.1074/jbc.272.17.11452 . PMID   9111057.
  8. 1 2 Zhou Q, Lavorgna A, Bowman M, Hiscott J, Harhaj EW (June 2015). "Aryl Hydrocarbon Receptor Interacting Protein Targets IRF7 to Suppress Antiviral Signaling and the Induction of Type I Interferon". The Journal of Biological Chemistry. 290 (23): 14729–39. doi: 10.1074/jbc.M114.633065 . PMC   4505538 . PMID   25911105.
  9. Petrulis JR, Perdew GH (2002). "The role of chaperone proteins in the aryl hydrocarbon receptor core complex". Chemico-Biological Interactions. 141 (1–2): 25–40. doi:10.1016/S0009-2797(02)00064-9. PMID   12213383.
  10. Occhi G, Trivellin G, Ceccato F, et al. (2010). "Prevalence of AIP mutations in a large series of sporadic Italian acromegalic patients and evaluation of CDKN1B status in acromegalic patients with multiple endocrine neoplasia". Eur. J. Endocrinol. 163 (3): 369–376. doi: 10.1530/EJE-10-0327 . PMID   20530095.
  11. Petrulis JR, Hord NG, Perdew GH (December 2000). "Subcellular localization of the aryl hydrocarbon receptor is modulated by the immunophilin homolog hepatitis B virus X-associated protein 2". J. Biol. Chem. 275 (48): 37448–53. doi: 10.1074/jbc.M006873200 . PMID   10986286.
  12. Ma Q, Whitlock JP (April 1997). "A novel cytoplasmic protein that interacts with the Ah receptor, contains tetratricopeptide repeat motifs, and augments the transcriptional response to 2,3,7,8-tetrachlorodibenzo-p-dioxin". J. Biol. Chem. 272 (14): 8878–84. doi: 10.1074/jbc.272.14.8878 . PMID   9083006.
  13. Sumanasekera WK, Tien ES, Turpey R, Vanden Heuvel JP, Perdew GH (February 2003). "Evidence that peroxisome proliferator-activated receptor alpha is complexed with the 90-kDa heat shock protein and the hepatitis virus B X-associated protein 2". J. Biol. Chem. 278 (7): 4467–73. doi: 10.1074/jbc.M211261200 . PMID   12482853.
  14. Kazlauskas A, Sundström S, Poellinger L, Pongratz I (April 2001). "The hsp90 chaperone complex regulates intracellular localization of the dioxin receptor". Mol. Cell. Biol. 21 (7): 2594–607. doi:10.1128/MCB.21.7.2594-2607.2001. PMC   86890 . PMID   11259606.

Further reading