AKAP9

Last updated
AKAP9
Identifiers
Aliases AKAP9 , AKAP-9, AKAP350, AKAP450, CG-NAP, HYPERION, LQT11, MU-RMS-40.16A, PPP1R45, PRKA9, YOTIAO, A-kinase anchoring protein 9
External IDs OMIM: 604001 HomoloGene: 17517 GeneCards: AKAP9
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_005751
NM_147166
NM_147171
NM_147185
NM_001379277

Contents

n/a

RefSeq (protein)

NP_005742
NP_671714
NP_001366206
NP_005742.4
NP_671714.1

n/a

Location (UCSC) Chr 7: 91.94 – 92.11 Mb n/a
PubMed search [2] n/a
Wikidata
View/Edit Human

A-kinase anchor protein 9 is a protein that in humans is encoded by the AKAP9 gene. [3] [4] [5] AKAP9 is also known as Centrosome- and Golgi-localized protein kinase N-associated protein (CG-NAP) or AKAP350 or AKAP450 [6]

Function

The A-kinase anchor proteins (AKAPs) are a group of structurally diverse proteins which have the common function of binding to the regulatory subunit of protein kinase A (PKA) and confining the holoenzyme to discrete locations within the cell. This gene encodes a member of the AKAP family. Alternate splicing of this gene results in many isoforms that localize to the centrosome and the Golgi apparatus, and interact with numerous signaling proteins from multiple signal transduction pathways. These signaling proteins include type II protein kinase A, serine/threonine kinase protein kinase N, protein phosphatase 1, protein phosphatase 2a, protein kinase C-epsilon and phosphodiesterase 4D3. [5]

Model organisms

Model organisms have been used in the study of AKAP9 function. A conditional knockout mouse line, called Akap9tm1a(KOMP)Wtsi [17] [18] was generated as part of the International Knockout Mouse Consortium program — a high-throughput mutagenesis project to generate and distribute animal models of disease to interested scientists. [19] [20] [21]

Male and female animals underwent a standardized phenotypic screen to determine the effects of deletion. [16] [22] Twenty six tests were carried out on mutant mice and eight significant abnormalities were observed. [16] Fewer than expected homozygous mutant mice survived until weaning. The remaining tests were carried out on both homozygous and heterozygous mutant adult mice. Animals of both sex displayed decreased body fat and body weight, hematopoietic abnormalities and an atypical plasma chemistry panel. Female homozygotes also displayed abnormal tooth morphology while males heterozygous animals displayed an abnormal pelvic girdle bone morphology. [16]

Interactions

AKAP9 has been shown to interact with:

Related Research Articles

<span class="mw-page-title-main">MAPK1</span> Protein-coding gene in the species Homo sapiens

Mitogen-activated protein kinase 1, (MAPK 1), also known as ERK2, is an enzyme that in humans is encoded by the MAPK1 gene.

<span class="mw-page-title-main">Calmodulin 1</span> Protein-coding gene in the species Homo sapiens

Calmodulin 1 is a protein that in humans is encoded by the CALM1 gene.

<span class="mw-page-title-main">PPP1CA</span> Enzyme

Serine/threonine-protein phosphatase PP1-alpha catalytic subunit is an enzyme that in humans is encoded by the PPP1CA gene.

<span class="mw-page-title-main">PRKAR2A</span> Protein-coding gene in the species Homo sapiens

cAMP-dependent protein kinase type II-alpha regulatory subunit is an enzyme that in humans is encoded by the PRKAR2A gene.

<span class="mw-page-title-main">Protein kinase N1</span> Protein-coding gene in the species Homo sapiens

Serine/threonine-protein kinase N1 is an enzyme that in humans is encoded by the PKN1 gene.

<span class="mw-page-title-main">PRKAB1</span> Protein-coding gene in the species Homo sapiens

5'-AMP-activated protein kinase subunit beta-1 is an enzyme that in humans is encoded by the PRKAB1 gene.

<span class="mw-page-title-main">AKAP5</span> Protein-coding gene in the species Homo sapiens

A-kinase anchor protein 5 is a protein that in humans is encoded by the AKAP5 gene.

<span class="mw-page-title-main">PPP2R1B</span> Protein-coding gene in the species Homo sapiens

Serine/threonine-protein phosphatase 2A 65 kDa regulatory subunit A beta isoform is an enzyme that in humans is encoded by the PPP2R1B gene.

<span class="mw-page-title-main">TRIP10</span> Protein-coding gene in the species Homo sapiens

Cdc42-interacting protein 4 is a protein that in humans is encoded by the TRIP10 gene.

<span class="mw-page-title-main">PPP2R3A</span> Protein-coding gene in the species Homo sapiens

Serine/threonine-protein phosphatase 2A regulatory subunit B'' subunit alpha is an enzyme that in humans is encoded by the PPP2R3A gene. Protein phosphatase 2 is one of the four major Ser/Thr phosphatases and is implicated in the negative control of cell growth and division. Protein phosphatase 2 holoenzymes are heterotrimeric proteins composed of a structural subunit A, a catalytic subunit C, and a regulatory subunit B. The regulatory subunit is encoded by a diverse set of genes that have been grouped into the B/PR55, B'/PR61, and B''/PR72 families. These different regulatory subunits confer distinct enzymatic specificities and intracellular localizations to the holozenzyme. The product of this gene belongs to the B'' family. The B'' family has been further divided into subfamilies. The product of this gene belongs to the alpha subfamily of regulatory subunit B''. Alternative splicing results in multiple transcript variants encoding different isoforms.

<span class="mw-page-title-main">FNBP1</span> Protein-coding gene in the species Homo sapiens

Formin-binding protein 1 is a protein that in humans is encoded by the FNBP1 gene.

<span class="mw-page-title-main">AKAP12</span> Protein-coding gene in the species Homo sapiens

A-kinase anchor protein 12, aka AKAP250, is an enzyme that in humans is encoded by the AKAP12 gene.

<span class="mw-page-title-main">AKAP1</span> Protein-coding gene in the species Homo sapiens

A kinase anchor protein 1, mitochondrial is an enzyme that in humans is encoded by the AKAP1 gene.

<span class="mw-page-title-main">AKAP8</span> Protein-coding gene in the species Homo sapiens

A-kinase anchor protein 8 is an enzyme that, in humans, is encoded by the AKAP8 gene.

<span class="mw-page-title-main">AKAP11</span> Protein-coding gene in the species Homo sapiens

A-kinase anchor protein 11 is an enzyme that in humans is encoded by the AKAP11 gene.

<span class="mw-page-title-main">CEP250</span> Protein-coding gene in the species Homo sapiens

Centrosome-associated protein CEP250 is a protein that in humans is encoded by the CEP250 gene. This gene encodes a core centrosomal protein required for centriole-centriole cohesion during interphase of the cell cycle. The encoded protein dissociates from the centrosomes when parental centrioles separate at the beginning of mitosis. The protein associates with and is phosphorylated by NIMA-related kinase 2, which is also associated with the centrosome. Furthermore, CEP135 is also required for the centriolar localization of CEP250.

<span class="mw-page-title-main">AKAP6</span> Protein-coding gene in the species Homo sapiens

A-kinase anchor protein 6 is an enzyme that in humans is encoded by the AKAP6 gene.

<span class="mw-page-title-main">Ninein-like protein</span> Protein-coding gene in the species Homo sapiens

Ninein-like protein is a protein that in humans is encoded by the NINL gene. It is part of the centrosome.

<span class="mw-page-title-main">PTPN21</span> Protein-coding gene in the species Homo sapiens

Tyrosine-protein phosphatase non-receptor type 21 is an enzyme that in humans is encoded by the PTPN21 gene.

A-kinase anchor protein 2 is an enzyme that in humans is encoded by the AKAP2 gene.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000127914 - Ensembl, May 2017
  2. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  3. Lin JW, Wyszynski M, Madhavan R, Sealock R, Kim JU, Sheng M (Apr 1998). "Yotiao, a novel protein of neuromuscular junction and brain that interacts with specific splice variants of NMDA receptor subunit NR1". J Neurosci. 18 (6): 2017–27. doi:10.1523/JNEUROSCI.18-06-02017.1998. PMC   6792910 . PMID   9482789.
  4. Westphal RS, Tavalin SJ, Lin JW, Alto NM, Fraser ID, Langeberg LK, Sheng M, Scott JD (Jul 1999). "Regulation of NMDA receptors by an associated phosphatase-kinase signaling complex". Science. 285 (5424): 93–6. doi:10.1126/science.285.5424.93. PMID   10390370.
  5. 1 2 "Entrez Gene: AKAP9 A kinase (PRKA) anchor protein (yotiao) 9".
  6. Ong ST, Chalasani ML, Fazil MH, Prasannan P, Kizhakeyil A, Wright GD, Kelleher D, Verma NK (Mar 2018). "Centrosome- and Golgi-Localized Protein Kinase N-Associated Protein Serves As a Docking Platform for Protein Kinase A Signaling and Microtubule Nucleation in Migrating T-Cells". Front. Immunol. 9 (397): 397. doi: 10.3389/fimmu.2018.00397 . PMC   5837996 . PMID   29545805.
  7. "Body weight data for Akap9". Wellcome Trust Sanger Institute.
  8. "Indirect calorimetry data for Akap9". Wellcome Trust Sanger Institute.
  9. "Glucose tolerance test data for Akap9". Wellcome Trust Sanger Institute.
  10. "DEXA data for Akap9". Wellcome Trust Sanger Institute.
  11. "Radiography data for Akap9". Wellcome Trust Sanger Institute.
  12. "Clinical chemistry data for Akap9". Wellcome Trust Sanger Institute.
  13. "Salmonella infection data for Akap9". Wellcome Trust Sanger Institute.
  14. "Citrobacter infection data for Akap9". Wellcome Trust Sanger Institute.
  15. Mouse Resources Portal, Wellcome Trust Sanger Institute.
  16. 1 2 3 4 Gerdin AK (2010). "The Sanger Mouse Genetics Programme: High throughput characterisation of knockout mice". Acta Ophthalmologica. 88: 925–7. doi:10.1111/j.1755-3768.2010.4142.x. S2CID   85911512.
  17. "International Knockout Mouse Consortium".
  18. "Mouse Genome Informatics".
  19. Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong PJ, Stewart AF, Bradley A (2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature. 474 (7351): 337–342. doi:10.1038/nature10163. PMC   3572410 . PMID   21677750.
  20. Dolgin E (2011). "Mouse library set to be knockout". Nature. 474 (7351): 262–3. doi: 10.1038/474262a . PMID   21677718.
  21. Collins FS, Rossant J, Wurst W (2007). "A Mouse for All Reasons". Cell. 128 (1): 9–13. doi: 10.1016/j.cell.2006.12.018 . PMID   17218247. S2CID   18872015.
  22. van der Weyden L, White JK, Adams DJ, Logan DW (2011). "The mouse genetics toolkit: revealing function and mechanism". Genome Biol. 12 (6): 224. doi:10.1186/gb-2011-12-6-224. PMC   3218837 . PMID   21722353.
  23. 1 2 Takahashi M, Yamagiwa A, Nishimura T, Mukai H, Ono Y (Sep 2002). "Centrosomal proteins CG-NAP and kendrin provide microtubule nucleation sites by anchoring gamma-tubulin ring complex". Mol. Biol. Cell. 13 (9): 3235–45. doi:10.1091/mbc.E02-02-0112. PMC   124155 . PMID   12221128.
  24. 1 2 Larocca MC, Shanks RA, Tian L, Nelson DL, Stewart DM, Goldenring JR (Jun 2004). "AKAP350 interaction with cdc42 interacting protein 4 at the Golgi apparatus". Mol. Biol. Cell. 15 (6): 2771–81. doi:10.1091/mbc.E03-10-0757. PMC   420101 . PMID   15047863.
  25. Marx SO, Kurokawa J, Reiken S, Motoike H, D'Armiento J, Marks AR, Kass RS (Jan 2002). "Requirement of a macromolecular signaling complex for beta adrenergic receptor modulation of the KCNQ1-KCNE1 potassium channel". Science. 295 (5554): 496–9. Bibcode:2002Sci...295..496M. doi:10.1126/science.1066843. PMID   11799244. S2CID   6153394.
  26. 1 2 Takahashi M, Shibata H, Shimakawa M, Miyamoto M, Mukai H, Ono Y (Jun 1999). "Characterization of a novel giant scaffolding protein, CG-NAP, that anchors multiple signaling enzymes to centrosome and the golgi apparatus". J. Biol. Chem. 274 (24): 17267–74. doi: 10.1074/jbc.274.24.17267 . PMID   10358086.
  27. Alto NM, Soderling SH, Hoshi N, Langeberg LK, Fayos R, Jennings PA, Scott JD (Apr 2003). "Bioinformatic design of A-kinase anchoring protein-in silico: a potent and selective peptide antagonist of type II protein kinase A anchoring". Proc. Natl. Acad. Sci. U.S.A. 100 (8): 4445–50. Bibcode:2003PNAS..100.4445A. doi: 10.1073/pnas.0330734100 . PMC   153575 . PMID   12672969.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.