APOF

Last updated
APOF
Identifiers
Aliases APOF , Apo-F, LTIP, apolipoprotein F
External IDs OMIM: 107760 MGI: 104539 HomoloGene: 48030 GeneCards: APOF
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001638

NM_133997

RefSeq (protein)

NP_001629

NP_598758

Location (UCSC) Chr 12: 56.36 – 56.36 Mb Chr 10: 128.1 – 128.11 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse
Apolipoprotein F
Identifiers
SymbolAPOF
Pfam PF15148
InterPro IPR026114
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary

Apolipoprotein F is a protein that in humans is encoded for by the APOF gene. [5] [6]

Contents

The product of this gene is one of the minor apolipoproteins found in plasma. This protein forms complexes with lipoproteins and may be involved in transport and/or esterification of cholesterol. [6]

Related Research Articles

<span class="mw-page-title-main">Lipoprotein lipase</span> Mammalian protein found in Homo sapiens

Lipoprotein lipase (LPL) (EC 3.1.1.34, systematic name triacylglycerol acylhydrolase (lipoprotein-dependent)) is a member of the lipase gene family, which includes pancreatic lipase, hepatic lipase, and endothelial lipase. It is a water-soluble enzyme that hydrolyzes triglycerides in lipoproteins, such as those found in chylomicrons and very low-density lipoproteins (VLDL), into two free fatty acids and one monoacylglycerol molecule:

<span class="mw-page-title-main">Apolipoprotein</span> Proteins that bind lipids to transport them in body fluids

Apolipoproteins are proteins that bind lipids to form lipoproteins. They transport lipids in blood, cerebrospinal fluid and lymph.

<span class="mw-page-title-main">Cholesteryl ester transfer protein</span> Mammalian protein found in Homo sapiens

Cholesteryl ester transfer protein (CETP), also called plasma lipid transfer protein, is a plasma protein that facilitates the transport of cholesteryl esters and triglycerides between the lipoproteins. It collects triglycerides from very-low-density (VLDL) or Chylomicrons and exchanges them for cholesteryl esters from high-density lipoproteins (HDL), and vice versa. Most of the time, however, CETP does a heteroexchange, trading a triglyceride for a cholesteryl ester or a cholesteryl ester for a triglyceride.

<span class="mw-page-title-main">Apolipoprotein C-I</span> Protein-coding gene in the species Homo sapiens

Apolipoprotein C-I is a protein component of lipoproteins that in humans is encoded by the APOC1 gene.

<span class="mw-page-title-main">Apolipoprotein C-III</span> Protein-coding gene in the species Homo sapiens

Apolipoprotein C-III also known as apo-CIII, and apolipoprotein C3, is a protein that in humans is encoded by the APOC3 gene. Apo-CIII is secreted by the liver as well as the small intestine, and is found on triglyceride-rich lipoproteins such as chylomicrons, very low density lipoprotein (VLDL), and remnant cholesterol.

<span class="mw-page-title-main">Apolipoprotein C-IV</span> Protein-coding gene in the species Homo sapiens

Apolipoprotein C-IV, also known as apolipoprotein C4, is a protein that in humans is encoded by the APOC4 gene.

<span class="mw-page-title-main">Apolipoprotein D</span> Protein-coding gene in the species Homo sapiens

Apolipoprotein D(ApoD) is a protein that in humans is encoded by the APOD gene. Unlike other lipoproteins, which are mainly produced in the liver, apolipoprotein D is mainly produced in the brain and testes. It is a 29 kDa glycoprotein discovered in 1963 as a component of the high-density lipoprotein (HDL) fraction of human plasma. It is the major component of human mammary cyst fluid. The human gene encoding it was cloned in 1986 and the deduced protein sequence revealed that ApoD is a member of the lipocalin family, small hydrophobic molecule transporters. ApoD is 169 amino acids long, including a secretion peptide signal of 20 amino acids. It contains two glycosylation sites (aspargines 45 and 78) and the molecular weight of the mature protein varies from 20 to 32 kDa (see figure 1).

<span class="mw-page-title-main">SREBP cleavage-activating protein</span> Protein-coding gene in the species Homo sapiens

Sterol regulatory element-binding protein cleavage-activating protein, also known as SREBP cleavage-activating protein or SCAP is a protein that in humans is encoded by the SCAP gene.

<span class="mw-page-title-main">APOA5</span> Protein-coding gene in the species Homo sapiens

Apolipoprotein A-V is a protein that in humans is encoded by the APOA5 gene on chromosome 11. It is significantly expressed in liver. The protein encoded by this gene is an apolipoprotein and an important determinant of plasma triglyceride levels, a major risk factor for coronary artery disease. It is a component of several lipoprotein fractions including VLDL, HDL, chylomicrons. It is believed that apoA-V affects lipoprotein metabolism by interacting with LDL-R gene family receptors. Considering its association with lipoprotein levels, APOA5 is implicated in metabolic syndrome. The APOA5 gene also contains one of 27 SNPs associated with increased risk of coronary artery disease.

<span class="mw-page-title-main">APOA4</span> Protein-coding gene in the species Homo sapiens

Apolipoprotein A-IV is plasma protein that is the product of the human gene APOA4.

<span class="mw-page-title-main">Phospholipid transfer protein</span> Mammalian protein found in Homo sapiens

Phospholipid transfer protein is a protein that in humans is encoded by the PLTP gene.

<span class="mw-page-title-main">PCSK9</span> Mammalian protein found in humans

Proprotein convertase subtilisin/kexin type 9 (PCSK9) is an enzyme encoded by the PCSK9 gene in humans on chromosome 1. It is the 9th member of the proprotein convertase family of proteins that activate other proteins. Similar genes (orthologs) are found across many species. As with many proteins, PCSK9 is inactive when first synthesized, because a section of peptide chains blocks their activity; proprotein convertases remove that section to activate the enzyme. The PCSK9 gene also contains one of 27 loci associated with increased risk of coronary artery disease.

<span class="mw-page-title-main">Microsomal triglyceride transfer protein</span>

Microsomal triglyceride transfer protein large subunit is a protein that in humans is encoded by the MTTP gene.

<span class="mw-page-title-main">SOAT2</span> Protein-coding gene in the species Homo sapiens

Sterol O-acyltransferase 2, also known as SOAT2, is an enzyme that in humans is encoded by the SOAT2 gene.

<span class="mw-page-title-main">ABCG8</span> Protein-coding gene in the species Homo sapiens

ATP-binding cassette sub-family G member 8 is a protein that in humans is encoded by the ABCG8 gene.

<span class="mw-page-title-main">APOM</span> Protein-coding gene in the species Homo sapiens

Apolipoprotein M is a protein that in humans is encoded by the APOM gene.

<span class="mw-page-title-main">ABCA7</span> Protein-coding gene in the species Homo sapiens

ATP-binding cassette sub-family A member 7 is a protein that in humans is encoded by the ABCA7 gene.

<span class="mw-page-title-main">ANGPTL3</span> Protein-coding gene in the species Homo sapiens

Angiopoietin-like 3, also known as ANGPTL3, is a protein that in humans is encoded by the ANGPTL3 gene.

<span class="mw-page-title-main">CYP8B1</span> Protein-coding gene in the species Homo sapiens

CYP8B1 also known as sterol 12-alpha-hydroxylase is a protein which in humans is encoded by the CYP8B1 gene.

<span class="mw-page-title-main">Apolipoprotein O</span> Protein-coding gene in the species Homo sapiens

Apolipoprotein O also known as protein FAM121B is a protein that in humans is encoded by the APOO gene. APOO is a member of the apolipoprotein family.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000175336 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000047631 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Day JR, Albers JJ, Gilbert TL, Whitmore TE, McConathy WJ, Wolfbauer G (Oct 1994). "Purification and molecular cloning of human apolipoprotein F". Biochem Biophys Res Commun. 203 (2): 1146–51. doi:10.1006/bbrc.1994.2302. PMID   8093033.
  6. 1 2 "Entrez Gene: APOF apolipoprotein F".

Further reading