ARL6IP4

Last updated
ARL6IP4
Identifiers
Aliases ARL6IP4 , SFRS20, SR-25, SRp25, SRrp37, ADP ribosylation factor like GTPase 6 interacting protein 4
External IDs OMIM: 607668 MGI: 1929500 HomoloGene: 9606 GeneCards: ARL6IP4
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_144509

RefSeq (protein)

NP_653092

Location (UCSC) Chr 12: 122.98 – 122.98 Mb Chr 5: 124.25 – 124.26 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

ADP-ribosylation-like factor 6 interacting protein 4 (ARL6IP4), also called SRp25 is the product of the ARL6IP4 gene located on chromosome 12q24. 31. Its function is unknown.

Contents

Structure

It is 360 amino acids in length. It is expressed ubiquitously but only in G1/S phase of the cell cycle. [5] The human and mouse mRNAs of this protein have 77% homology. [6]

Two types of amino acid clusters have been observed, a serine cluster and a basic cluster. [6]

Function

Its function(s) are unknown. However, due to sequence homology of its protein with SR splicing factors, it is widely believed that the protein is nuclear and may have a role in splicing regulation. [6] The protein is believed to be a mediator in the RAC1 signalling pathway. [7]

RNA editing

The pre-mRNA of the ARL6IP4 gene product is subject to RNA Editing. [8]

Type

A to I RNA editing is catalyzed by a family of adenosine deaminases acting on RNA (ADARs) that specifically recognize adenosines within double-stranded regions of pre-mRNAs and deaminate them to inosine. Inosines are recognised as guanosine by cellular translational machinery. ADAR 1 and ADAR 2 are the only enzymatically active members. ADAR3 is thought to have a regulatory role in the brain. ADAR1 and ADAR 2 are widely expressed in tissues while ADAR 3 is restricted to the brain. The double stranded regions of RNA are formed by base-pairing between residues in the region close to the editing site with residues usually in a neighboring intron but can be an exonic sequence. The region that base pairs with the editing region is known as an Editing Complementary Sequence (ECS).

Location

Editing occurs at a K/R editing site within amino acid position 225 of the final protein. Using RT-PCR and sequencing of 100 individual clones, 7% of isoform 3 of the protein showed a G instead of an A at this position during sequencing. Other minor editing sites may be potentially present including some in the same exon as the major editing site. As is the case of IGFBP7, pre-mRNA, editing is unusual as the RNA fold back structure is made up off exonic sequence only. [8]

Effects on protein structure

Editing at this site results in a codon changed from a Lysine to an Arginine. This occurs in a highly basic region of the protein. [8]

Effects on protein function

The function of the unedited protein is largely uncharacterised. Therefore, the effect of editing on the pre-mRNA on the proteins function is also unknown. The amino acid change is conservative and is unlikely to massively alter protein function. However, the editing site may be important since the amino acid being altered is a Lysine, which may be involved in the regulation of protein expression. Lysines can be sites of post-translational modification and the conversion of Lysine to an Arginine could affect post-translational modification. [8]

Related Research Articles

<span class="mw-page-title-main">Protein biosynthesis</span> Assembly of proteins inside biological cells

Protein biosynthesis is a core biological process, occurring inside cells, balancing the loss of cellular proteins through the production of new proteins. Proteins perform a number of critical functions as enzymes, structural proteins or hormones. Protein synthesis is a very similar process for both prokaryotes and eukaryotes but there are some distinct differences.

<span class="mw-page-title-main">RNA editing</span> Molecular process

RNA editing is a molecular process through which some cells can make discrete changes to specific nucleotide sequences within an RNA molecule after it has been generated by RNA polymerase. It occurs in all living organisms and is one of the most evolutionarily conserved properties of RNAs. RNA editing may include the insertion, deletion, and base substitution of nucleotides within the RNA molecule. RNA editing is relatively rare, with common forms of RNA processing not usually considered as editing. It can affect the activity, localization as well as stability of RNAs, and has been linked with human diseases.

RNA-binding proteins are proteins that bind to the double or single stranded RNA in cells and participate in forming ribonucleoprotein complexes. RBPs contain various structural motifs, such as RNA recognition motif (RRM), dsRNA binding domain, zinc finger and others. They are cytoplasmic and nuclear proteins. However, since most mature RNA is exported from the nucleus relatively quickly, most RBPs in the nucleus exist as complexes of protein and pre-mRNA called heterogeneous ribonucleoprotein particles (hnRNPs). RBPs have crucial roles in various cellular processes such as: cellular function, transport and localization. They especially play a major role in post-transcriptional control of RNAs, such as: splicing, polyadenylation, mRNA stabilization, mRNA localization and translation. Eukaryotic cells express diverse RBPs with unique RNA-binding activity and protein–protein interaction. According to the Eukaryotic RBP Database (EuRBPDB), there are 2961 genes encoding RBPs in humans. During evolution, the diversity of RBPs greatly increased with the increase in the number of introns. Diversity enabled eukaryotic cells to utilize RNA exons in various arrangements, giving rise to a unique RNP (ribonucleoprotein) for each RNA. Although RBPs have a crucial role in post-transcriptional regulation in gene expression, relatively few RBPs have been studied systematically.It has now become clear that RNA–RBP interactions play important roles in many biological processes among organisms.

<span class="mw-page-title-main">Kv1.1</span>

Potassium voltage-gated channel subfamily A member 1 also known as Kv1.1 is a shaker related voltage-gated potassium channel that in humans is encoded by the KCNA1 gene. Isaacs syndrome is a result of an autoimmune reaction against the Kv1.1 ion channel.

Missense mRNA is a messenger RNA bearing one or more mutated codons that yield polypeptides with an amino acid sequence different from the wild-type or naturally occurring polypeptide. Missense mRNA molecules are created when template DNA strands or the mRNA strands themselves undergo a missense mutation in which a protein coding sequence is mutated and an altered amino acid sequence is coded for.

<span class="mw-page-title-main">GRIA3</span> Protein-coding gene in humans

Glutamate receptor 3 is a protein that in humans is encoded by the GRIA3 gene.

5-HT<sub>2C</sub> receptor Serotonin receptor protein distributed mainly in the choroid plexus

The 5-HT2C receptor is a subtype of 5-HT receptor that binds the endogenous neurotransmitter serotonin (5-hydroxytryptamine, 5-HT). It is a G protein-coupled receptor (GPCR) that is coupled to Gq/G11 and mediates excitatory neurotransmission. HTR2C denotes the human gene encoding for the receptor, that in humans is located at the X chromosome. As males have one copy of the gene and in females one of the two copies of the gene is repressed, polymorphisms at this receptor can affect the two sexes to differing extent.

<span class="mw-page-title-main">FLNA</span> Protein-coding gene in the species Homo sapiens

Filamin A, alpha (FLNA) is a protein that in humans is encoded by the FLNA gene.

<span class="mw-page-title-main">ADAR</span> Mammalian protein found in Homo sapiens

The double-stranded RNA-specific adenosine deaminase enzyme family are encoded by the ADAR family genes. ADAR stands for adenosine deaminase acting on RNA. This article focuses on the ADAR proteins; This article details the evolutionary history, structure, function, mechanisms and importance of all proteins within this family.

<span class="mw-page-title-main">GRIA2</span> Mammalian protein found in Homo sapiens

Glutamate ionotropic receptor AMPA type subunit 2 is a protein that in humans is encoded by the GRIA2 gene and it is a subunit found in the AMPA receptors.

<span class="mw-page-title-main">GRIK2</span> Protein-coding gene in the species Homo sapiens

Glutamate ionotropic receptor kainate type subunit 2, also known as ionotropic glutamate receptor 6 or GluR6, is a protein that in humans is encoded by the GRIK2 gene.

<span class="mw-page-title-main">IGFBP7</span> Protein-coding gene in the species Homo sapiens

Insulin-like growth factor-binding protein 7 is a protein that in humans is encoded by the IGFBP7 gene. The major function of the protein is the regulation of availability of insulin-like growth factors (IGFs) in tissue as well as in modulating IGF binding to its receptors. IGFBP7 binds to IGF with low affinity compared to IGFBPs 1-6. It also stimulates cell adhesion. The protein is implicated in some cancers.

<span class="mw-page-title-main">ADARB1</span> Protein-coding gene in the species Homo sapiens

Double-stranded RNA-specific editase 1 is an enzyme that in humans is encoded by the ADARB1 gene. The enzyme is a member of ADAR family.

<span class="mw-page-title-main">GRIK1</span> Protein-coding gene in the species Homo sapiens

Glutamate receptor, ionotropic, kainate 1, also known as GRIK1, is a protein that in humans is encoded by the GRIK1 gene.

<span class="mw-page-title-main">CYFIP2</span> Protein-coding gene in the species Homo sapiens

Cytoplasmic FMR1-interacting protein 2 is a protein that in humans is encoded by the CYFIP2 gene. Cytoplasmic FMR1 interacting protein is a 1253 amino acid long protein and is highly conserved sharing 99% sequence identity to the mouse protein. It is expressed mainly in brain tissues, white blood cells and the kidney.

<span class="mw-page-title-main">GRIA4</span>

Glutamate receptor 4 is a protein that in humans is encoded by the GRIA4 gene.

<span class="mw-page-title-main">GABRA3</span> Protein-coding gene in humans

Gamma-aminobutyric acid receptor subunit alpha-3 is a protein that in humans is encoded by the GABRA3 gene.

<span class="mw-page-title-main">BLCAP</span> Protein-coding gene in the species Homo sapiens

Bladder cancer-associated protein is a protein that in humans is encoded by the BLCAP gene.

Within the science of molecular biology and cell biology, for human genetics, the GRIA2 gene is located on chromosome 4q32-q33. The gene product is the ionotropic AMPA glutamate receptor 2. The protein belongs to a family of ligand-activated glutamate receptors that are sensitive to alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA). Glutamate receptors function as the main excitatory neurotransmitter at many synapses in the central nervous system. L-glutamate, an excitatory neurotransmitter, binds to the Gria2 resulting in a conformational change. This leads to the opening of the channel converting the chemical signal to an electrical impulse. AMPA receptors (AMPAR) are composed of four subunits, designated as GluR1 (GRIA1), GluR2 (GRIA2), GluR3 (GRIA3), and GluR4(GRIA4) which combine to form tetramers. They are usually heterotrimeric but can be homodimeric. Each AMPAR has four sites to which an agonist can bind, one for each subunit.[5]

<span class="mw-page-title-main">C1QL1</span> Protein-coding gene in the species Homo sapiens

The complement component 1, q subcomponent-like 1 is encoded by a gene located at chromosome 17q21.31. It is a secreted protein and is 258 amino acids in length. The protein is widely expressed but its expression is highest in the brain and may also be involved in regulation of motor control. The pre-mRNA of this protein is subject to RNA editing.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000182196 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000029404 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. "ARL6IP4 Gene - GeneCards | AR6P4 Protein | AR6P4 Antibody". Archived from the original on 2011-07-26. Retrieved 2011-02-14.
  6. 1 2 3 Sasahara K, Yamaoka T, Moritani M, Tanaka M, Iwahana H, Yoshimoto K, Miyagawa J, Kuroda Y, Itakura M (March 2000). "Molecular cloning and expression analysis of a putative nuclear protein, SR-25". Biochem. Biophys. Res. Commun. 269 (2): 444–50. doi:10.1006/bbrc.2000.2301. PMID   10708573.
  7. Li Q, Zhao H, Jiang L, Che Y, Dong C, Wang L, Wang J, Liu L (March 2002). "An SR-protein induced by HSVI binding to cells functioning as a splicing inhibitor of viral pre-mRNA". J. Mol. Biol. 316 (4): 887–94. doi:10.1006/jmbi.2001.5318. PMID   11884129.
  8. 1 2 3 4 Gommans WM, Tatalias NE, Sie CP, Dupuis D, Vendetti N, Smith L, Kaushal R, Maas S (October 2008). "Screening of human SNP database identifies recoding sites of A-to-I RNA editing". RNA. 14 (10): 2074–85. doi:10.1261/rna.816908. PMC   2553741 . PMID   18772245.