Acoustic foam

Last updated
A close-up image of acoustic foam. Acoustic foam closeup.jpg
A close-up image of acoustic foam.

Acoustic foam is an open celled foam used for acoustic treatment. It attenuates airbone sound waves, reducing their amplitude, for the purposes of noise reduction or noise control. [1] The energy is dissipated as heat. [2] Acoustic foam can be made in several different colors, sizes and thickness. [3]

Contents

Acoustic foam can be attached to walls, ceilings, doors, and other features of a room to control noise levels, vibration, and echoes. [4]

Many acoustic foam products are treated with dyes and/or fire retardants. [5]

Uses

The objective of acoustic foam is to improve or change a room's sound qualities by controlling residual sound through absorption. [6] This purpose requires strategic placement of acoustic foam panels on walls, ceilings, floors and other surfaces. Proper placement can help effectively manage resonance within the room and help give the room the desired sonic qualities. [7]

Acoustic enhancement

The objective of acoustic foam is to enhance the sonic properties of a room by effectively managing unwanted reverberations. [2] For this reason, acoustic foam is often used in restaurants, [8] performance spaces, [9] and recording studios. [10] Acoustic foam is also often installed in large rooms with large, reverberative surfaces like gymnasiums, places of worship, theaters, and concert halls where excess reverberation is prone to arise. [9] The purpose is to reduce, but not entirely eliminate, resonance within the room. [10] In unmanaged spaces without acoustic foam or similar sound absorbing materials, sound waves reflect off of surfaces and continue to bounce around in the room. When a wave encounters a change in acoustic impedance, such as hitting a solid surface, acoustic reflections transpire. These reflections will occur many times before the wave becomes inaudible. Reflections can cause acoustic problems such as phase summation and phase cancellation. A new complex wave originates when the direct source wave coincides with the reflected waves. This complex wave will change the frequency response of the source material. [10]

Functionality

Acoustic foam is a lightweight material made from polyurethane (either polyether or polyester) or extruded melamine foam. [8] It is usually cut into tiles. One surface of these tiles often features pyramid, cone, wedge, or uneven cuboid shapes. Acoustic foam tiles are suited to placing on sonically reflective surfaces to act as sound absorbers, thus enhancing or changing the sound properties of a room. [11]

This type of sound absorption is different from soundproofing, which is typically used to keep sound from escaping or entering a room rather than changing the properties of sound within the room itself. [11]

Acoustic foam panels typically suppress reverberations in the mid and high frequencies. [11] To deal with lower frequencies, much thicker pieces of acoustic foam (often in metal or wood enclosures) can be placed in the corners of a room and are called acoustic foam bass traps.


See also

Related Research Articles

<span class="mw-page-title-main">Acoustics</span> Branch of physics involving mechanical waves

Acoustics is a branch of physics that deals with the study of mechanical waves in gases, liquids, and solids including topics such as vibration, sound, ultrasound and infrasound. A scientist who works in the field of acoustics is an acoustician while someone working in the field of acoustics technology may be called an acoustical engineer. The application of acoustics is present in almost all aspects of modern society with the most obvious being the audio and noise control industries.

Reverberation, in acoustics, is a persistence of sound after it is produced. Reverberation is created when a sound or signal is reflected. This causes numerous reflections to build up and then decay as the sound is absorbed by the surfaces of objects in the space – which could include furniture, people, and air. This is most noticeable when the sound source stops but the reflections continue, their amplitude decreasing, until zero is reached.

<span class="mw-page-title-main">Recording studio</span> Facility for sound recording

A recording studio is a specialized facility for recording and mixing of instrumental or vocal musical performances, spoken words, and other sounds. They range in size from a small in-home project studio large enough to record a single singer-guitarist, to a large building with space for a full orchestra of 100 or more musicians. Ideally, both the recording and monitoring spaces are specially designed by an acoustician or audio engineer to achieve optimum acoustic properties.

Room acoustics is a subfield of acoustics dealing with the behaviour of sound in enclosed or partially-enclosed spaces. The architectural details of a room influences the behaviour of sound waves within it, with the effects varying by frequency. Acoustic reflection, diffraction, and diffusion can combine to create audible phenomena such as room modes and standing waves at specific frequencies and locations, echos, and unique reverberation patterns.

<span class="mw-page-title-main">Anechoic chamber</span> Room designed to be completely echo free

An anechoic chamber is a room designed to stop reflections or echoes of either sound or electromagnetic waves. They are also often isolated from energy entering from their surroundings. This combination means that a person or detector exclusively hears direct sounds, in effect simulating being outside in a free field.

<span class="mw-page-title-main">Soundproofing</span> Methods to reduce sound pressure

Soundproofing is any means of impeding sound propagation. There are several basic ways to reduce sound: increasing the distance between source and receiver, decoupling, using noise barriers to reflect or absorb the energy of the sound waves, using damping structures such as sound baffles for absorption, or using active antinoise sound generators.

<span class="mw-page-title-main">Noise reduction coefficient</span>

The noise reduction coefficient is a single number value ranging from 0.0 to 1.0 that describes the average sound absorption performance of a material. An NRC of 0.0 indicates the object does not attenuate mid-frequency sounds, but rather reflects sound energy. This is more conceptual than physically achievable: even very thick concrete walls will attenuate sound and may have an NRC of 0.05. Conversely, an NRC of 1.0 indicates that the material provides an acoustic surface area that is equivalent to its physical, two-dimensional surface area. This rating is common of thicker, porous sound absorptive materials such as 2"-thick fabric-wrapped fiberglass panel. Materials can achieve NRC values greater than 1.00. This is a shortcoming of the test procedure and a limitation of how acousticians define a square unit of absorption, and not a characteristic of the material itself.

<span class="mw-page-title-main">Architectural acoustics</span> Science and engineering of achieving a good sound within a building

Architectural acoustics is the science and engineering of achieving a good sound within a building and is a branch of acoustical engineering. The first application of modern scientific methods to architectural acoustics was carried out by the American physicist Wallace Sabine in the Fogg Museum lecture room. He applied his newfound knowledge to the design of Symphony Hall, Boston.

A reverberation room or reverberation chamber is a room designed to create reverberation, a diffuse or random incidence sound field. Reverberation chambers tend to be large rooms and have very hard exposed surfaces. The change of impedance these surfaces present to incident sound is so large that virtually all of the acoustic energy that hits a surface is reflected back into the room. Arranging the room surfaces to be non-parallel helps inhibit the formation of standing waves - additional acoustic diffusers are often used to create more reflecting surfaces and further encourage even distribution of any particular sound field.

Sound Transmission Class is an integer rating of how well a building partition attenuates airborne sound. In the US, it is widely used to rate interior partitions, ceilings, floors, doors, windows and exterior wall configurations. Outside the US, the ISO Sound Reduction Index (SRI) is used. The STC rating very roughly reflects the decibel reduction of noise that a partition can provide. The STC is useful for evaluating annoyance due to speech sounds, but not music or machinery noise as these sources contain more low frequency energy than speech.

<span class="mw-page-title-main">Absorption (acoustics)</span> When an object takes in energy from sound waves instead of reflecting them

In acoustics, absorption refers to the process by which a material, structure, or object takes in sound energy when sound waves are encountered, as opposed to reflecting the energy. Part of the absorbed energy is transformed into heat and part is transmitted through the absorbing body. The energy transformed into heat is said to have been 'lost'.

<span class="mw-page-title-main">Noise control</span> Strategies to reduce noise pollution or its impact

Noise control or noise mitigation is a set of strategies to reduce noise pollution or to reduce the impact of that noise, whether outdoors or indoors.

Room modes are the collection of resonances that exist in a room when the room is excited by an acoustic source such as a loudspeaker. Most rooms have their fundamental resonances in the 20 Hz to 200 Hz region, each frequency being related to one or more of the room's dimensions or a divisor thereof. These resonances affect the low-frequency low-mid-frequency response of a sound system in the room and are one of the biggest obstacles to accurate sound reproduction.

Acoustic waves are a type of energy propagation through a medium by means of adiabatic loading and unloading. Important quantities for describing acoustic waves are acoustic pressure, particle velocity, particle displacement and acoustic intensity. Acoustic waves travel with a characteristic acoustic velocity that depends on the medium they're passing through. Some examples of acoustic waves are audible sound from a speaker, seismic waves, or ultrasound used for medical imaging.

<span class="mw-page-title-main">Diffusion (acoustics)</span>

Diffusion, in architectural acoustics, is the spreading of sound energy evenly in a given environment. A perfectly diffusive sound space is one in which the reverberation time is the same at any listening position. Most interior spaces are non-diffusive; the reverberation time is considerably different around the room. At low frequencies, they suffer from prominent resonances called room modes.

<span class="mw-page-title-main">Bass trap</span>

Bass traps are acoustic energy absorbers which are designed to damp low-frequency sound energy with the goal of attaining a flatter low-frequency (LF) room response by reducing LF resonances in rooms. They are commonly used in recording studios, mastering rooms, home theatres and other rooms built to provide a critical listening environment. Like all acoustically absorptive devices, they function by turning sound energy into heat through friction.

Acoustic quieting is the process of making machinery quieter by damping vibrations to prevent them from reaching an observer. Machinery vibrates, causing sound waves in air, hydroacoustic waves in water, and mechanical stresses in solid matter. Quieting is achieved by absorbing the vibrational energy or minimizing the source of the vibration. It may also be redirected away from an observer.

<span class="mw-page-title-main">Sound</span> Vibration that travels via pressure waves in matter

In physics, sound is a vibration that propagates as an acoustic wave through a transmission medium such as a gas, liquid or solid. In human physiology and psychology, sound is the reception of such waves and their perception by the brain. Only acoustic waves that have frequencies lying between about 20 Hz and 20 kHz, the audio frequency range, elicit an auditory percept in humans. In air at atmospheric pressure, these represent sound waves with wavelengths of 17 meters (56 ft) to 1.7 centimeters (0.67 in). Sound waves above 20 kHz are known as ultrasound and are not audible to humans. Sound waves below 20 Hz are known as infrasound. Different animal species have varying hearing ranges.

Acoustic plaster is plaster which contains fibres or aggregate so that it absorbs sound. Early plasters contained asbestos, but newer ones consist of a base layer of absorptive substrate panels, which are typically mineral wool, or a non-combustible inorganic blow-glass granulate. A first finishing layer is then applied on top of the substrate panels, and sometimes a second finishing layer is added for greater sound attenuation. Pre-made acoustic panels are more commonly used, but acoustic plaster provides a smooth and seamless appearance, and greater flexibility for readjustment. The drawback is the greater level of skill required in application. Proprietary types of acoustic plaster developed in the 1920s included Macoustic Plaster, Sabinite, Kalite, Wyodak, Old Newark and Sprayo-Flake produced by companies such as US Gypsum.

Diffuse field acoustic testing is the testing of the mechanical resistance of a spacecraft to the acoustic pressures during launch.

References

  1. "Acoustical Foam". universalpowerconversion.com.
  2. 1 2 Foley, Dennis (2020-02-05). "How Does Acoustic Foam Work?". Acoustic Fields. Retrieved 2020-12-31.
  3. "What Is Acoustic Foam Made Of ?". SoundAssured. Retrieved 2020-12-31.
  4. "Effects of egg crate foam as acoustics panel". pfa. 14 November 2019.
  5. "Fire Testing Data". auralex.com.
  6. Chen, Francine Robina (1980). "Acoustic characteristics and intelligibility of clear and conversational speech at the segmental level" via Massachusetts Institute of Technology.
  7. "Acoustic Treatment - Acoustic Panels". avbend.com. Audio Visual Bend.
  8. 1 2 "Basotect®". plastics-rubber.basf.com. Retrieved 2021-01-19.
  9. 1 2 "Acoustical Testing, Engineering and Design Services". TechLite. Retrieved 2021-01-19.
  10. 1 2 3 Everest, Alton (1997). Sound Studio Construction on a Budget. New York: McGraw-Hill.
  11. 1 2 3 "Acoustic Foam Placement Guide - Amount & Positioning, What is best for you?". Acoustic Fields. 2014-07-31. Retrieved 2021-01-19.