Adapter molecule crk

Last updated
CRK
Protein CRK PDB 1b07.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases CRK , CRKII, p38, v-crk avian sarcoma virus CT10 oncogene homolog, CRK proto-oncogene, adaptor protein
External IDs OMIM: 164762 MGI: 88508 HomoloGene: 81850 GeneCards: CRK
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_016823
NM_005206

NM_001277219
NM_001277221
NM_133656

RefSeq (protein)

NP_005197
NP_058431

NP_001264148
NP_001264150
NP_598417

Location (UCSC) Chr 17: 1.42 – 1.46 Mb Chr 11: 75.57 – 75.6 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Adapter molecule crk also known as proto-oncogene c-Crk is a protein that in humans is encoded by the CRK gene. [5]

Contents

The CRK protein participates in the Reelin signaling cascade downstream of DAB1. [6] [7]

Function

Adapter molecule crk is a member of an adapter protein family that binds to several tyrosine-phosphorylated proteins. This protein has several SH2 and SH3 domains (src-homology domains) and is involved in several signaling pathways, recruiting cytoplasmic proteins in the vicinity of tyrosine kinase through SH2-phosphotyrosine interaction. The N-terminal SH2 domain of this protein functions as a positive regulator of transformation whereas the C-terminal SH3 domain functions as a negative regulator of transformation. Two alternative transcripts encoding different isoforms with distinct biological activity have been described. [8]

Crk together with CrkL participates in the Reelin signaling cascade downstream of DAB1. [6] [7]

v-Crk, a transforming oncoprotein from avian sarcoma viruses, is a fusion of viral "gag" protein with the SH2 and SH3 domains of cellular Crk. [9] The name Crk is from "CT10 Regulator of Kinase" where CT10 is the avian virus from which was isolated a protein, lacking kinase domains, but capable of stimulating phosphorylation of tyrosines in cells. [10]

Crk should not be confused with Src, which also has cellular (c-Src) and viral (v-Src) forms and is involved in some of the same signaling pathways but is a protein tyrosine-kinase.

Interactions

CRK (gene) has been shown to interact with:

See also

Related Research Articles

<span class="mw-page-title-main">ABL (gene)</span> Human protein-coding gene on chromosome 9

Tyrosine-protein kinase ABL1 also known as ABL1 is a protein that, in humans, is encoded by the ABL1 gene located on chromosome 9. c-Abl is sometimes used to refer to the version of the gene found within the mammalian genome, while v-Abl refers to the viral gene, which was initially isolated from the Abelson murine leukemia virus.

<span class="mw-page-title-main">GRB2</span> Protein-coding gene in the species Homo sapiens

Growth factor receptor-bound protein 2, also known as Grb2, is an adaptor protein involved in signal transduction/cell communication. In humans, the GRB2 protein is encoded by the GRB2 gene.

<span class="mw-page-title-main">PTPN11</span> Protein-coding gene in the species Homo sapiens

Tyrosine-protein phosphatase non-receptor type 11 (PTPN11) also known as protein-tyrosine phosphatase 1D (PTP-1D), Src homology region 2 domain-containing phosphatase-2 (SHP-2), or protein-tyrosine phosphatase 2C (PTP-2C) is an enzyme that in humans is encoded by the PTPN11 gene. PTPN11 is a protein tyrosine phosphatase (PTP) Shp2.

<span class="mw-page-title-main">GRB10</span> Protein-coding gene in the species Homo sapiens

Growth factor receptor-bound protein 10 also known as insulin receptor-binding protein Grb-IR is a protein that in humans is encoded by the GRB10 gene.

<span class="mw-page-title-main">FYN</span> Mammalian protein found in Homo sapiens

Proto-oncogene tyrosine-protein kinase Fyn is an enzyme that in humans is encoded by the FYN gene.

<span class="mw-page-title-main">PIK3R1</span> Protein-coding gene in the species Homo sapiens

Phosphatidylinositol 3-kinase regulatory subunit alpha is an enzyme that in humans is encoded by the PIK3R1 gene.

<span class="mw-page-title-main">MAP4K1</span> Protein-coding gene in the species Homo sapiens

Mitogen-activated protein kinase kinase kinase kinase 1 is a protein kinase that in humans is encoded by the MAP4K1 gene. It is also known as HPK1. The protein has been shown to play a role in JNK activation.

<span class="mw-page-title-main">PTPN6</span> Protein-coding gene in the species Homo sapiens

Tyrosine-protein phosphatase non-receptor type 6, also known as Src homology region 2 domain-containing phosphatase-1 (SHP-1), is an enzyme that in humans is encoded by the PTPN6 gene.

<span class="mw-page-title-main">CBL (gene)</span> Mammalian gene

Cbl is a mammalian gene family. CBL gene, a part of the Cbl family, encodes the protein CBL which is an E3 ubiquitin-protein ligase involved in cell signalling and protein ubiquitination. Mutations to this gene have been implicated in a number of human cancers, particularly acute myeloid leukaemia.

<span class="mw-page-title-main">RAS p21 protein activator 1</span> Protein-coding gene in the species Homo sapiens

RAS p21 protein activator 1 or RasGAP, also known as RASA1, is a 120-kDa cytosolic human protein that provides two principal activities:

<span class="mw-page-title-main">KHDRBS1</span> Protein-coding gene in the species Homo sapiens

KH domain-containing, RNA-binding, signal transduction-associated protein 1 is a protein that in humans is encoded by the KHDRBS1 gene.

<span class="mw-page-title-main">CRKL</span> Protein-coding gene in the species Homo sapiens

Crk-like protein is a protein that in humans is encoded by the CRKL gene.

<span class="mw-page-title-main">GRB2-associated-binding protein 1</span> Protein-coding gene in the species Homo sapiens

GRB2-associated-binding protein 1 is a protein that in humans is encoded by the GAB1 gene.

<span class="mw-page-title-main">RAPGEF1</span> Protein-coding gene in the species Homo sapiens

Rap guanine nucleotide exchange factor 1 is a protein that in humans is encoded by the RAPGEF1 gene.

<span class="mw-page-title-main">NCK1</span> Protein-coding gene in the species Homo sapiens

Cytoplasmic protein NCK1 is a protein that in humans is encoded by the NCK1 gene.

<span class="mw-page-title-main">BCAR1</span> Protein-coding gene in the species Homo sapiens

Breast cancer anti-estrogen resistance protein 1 is a protein that in humans is encoded by the BCAR1 gene.

<span class="mw-page-title-main">PTPRA</span> Protein-coding gene in the species Homo sapiens

Receptor-type tyrosine-protein phosphatase alpha is an enzyme that in humans is encoded by the PTPRA gene.

<span class="mw-page-title-main">ABL2</span> Protein-coding gene in the species Homo sapiens

Tyrosine-protein kinase ABL2 also known as Abelson-related gene (Arg) is an enzyme that in humans is encoded by the ABL2 gene.

<span class="mw-page-title-main">Megakaryocyte-associated tyrosine kinase</span> Protein-coding gene in the species Homo sapiens

Megakaryocyte-associated tyrosine-protein kinase is an enzyme that in humans is encoded by the MATK gene.

A non-receptor tyrosine kinase (nRTK) is a cytosolic enzyme that is responsible for catalysing the transfer of a phosphate group from a nucleoside triphosphate donor, such as ATP, to tyrosine residues in proteins. Non-receptor tyrosine kinases are a subgroup of protein family tyrosine kinases, enzymes that can transfer the phosphate group from ATP to a tyrosine residue of a protein (phosphorylation). These enzymes regulate many cellular functions by switching on or switching off other enzymes in a cell.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000167193 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000017776 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Mayer BJ, Hanafusa H (1990). "Association of the v-crk oncogene product with phosphotyrosine-containing proteins and protein kinase activity". Proc Natl Acad Sci U S A. 87 (7): 2638–42. Bibcode:1990PNAS...87.2638M. doi: 10.1073/pnas.87.7.2638 . PMC   53745 . PMID   1690891.
  6. 1 2 Matsuki T, Pramatarova A, Howell BW (June 2008). "Reduction of Crk and CrkL expression blocks reelin-induced dendritogenesis". J. Cell Sci. 121 (Pt 11): 1869–75. doi:10.1242/jcs.027334. PMC   2430739 . PMID   18477607.
  7. 1 2 Park TJ, Curran T (December 2008). "Crk and Crk-like play essential overlapping roles downstream of disabled-1 in the Reelin pathway". J. Neurosci. 28 (50): 13551–62. doi:10.1523/JNEUROSCI.4323-08.2008. PMC   2628718 . PMID   19074029.
  8. "Entrez Gene: CRK v-crk sarcoma virus CT10 oncogene homolog (avian)".
  9. Tetsuya Nakamoto, Ryuichi Sakai, Keiya Ozawa, Yoshio Yazaki, Hisamaru Hirai (1996). "Direct Binding of C-terminal Region of p130Graphic to SH2 and SH3 Domains of Src Kinase". J. Biol. Chem. 271 (15): 8959–8965. doi: 10.1074/jbc.271.15.8959 . PMID   8621540.
  10. Mayer BJ, Hamaguchi M, Hanafusa H (March 1988). "A novel viral oncogene with structural similarity to phospholipase C". Nature. 332 (6161): 272–5. Bibcode:1988Natur.332..272M. doi:10.1038/332272a0. PMID   2450282. S2CID   4352676.
  11. Zhou B, Liu L, Reddivari M, Zhang XA (2004). "The palmitoylation of metastasis suppressor KAI1/CD82 is important for its motility- and invasiveness-inhibitory activity". Cancer Res. 64 (20): 7455–63. doi: 10.1158/0008-5472.CAN-04-1574 . PMID   15492270.
  12. Di Stefano P, Cabodi S, Boeri Erba E, Margaria V, Bergatto E, Giuffrida MG, Silengo L, Tarone G, Turco E, Defilippi P (2004). "P130Cas-associated protein (p140Cap) as a new tyrosine-phosphorylated protein involved in cell spreading". Mol. Biol. Cell. 15 (2): 787–800. doi:10.1091/mbc.E03-09-0689. PMC   329393 . PMID   14657239.
  13. 1 2 3 Hsia DA, Mitra SK, Hauck CR, Streblow DN, Nelson JA, Ilic D, Huang S, Li E, Nemerow GR, Leng J, Spencer KS, Cheresh DA, Schlaepfer DD (2003). "Differential regulation of cell motility and invasion by FAK". J. Cell Biol. 160 (5): 753–67. doi:10.1083/jcb.200212114. PMC   2173366 . PMID   12615911.
  14. 1 2 Gu J, Sumida Y, Sanzen N, Sekiguchi K (2001). "Laminin-10/11 and fibronectin differentially regulate integrin-dependent Rho and Rac activation via p130(Cas)-CrkII-DOCK180 pathway". J. Biol. Chem. 276 (29): 27090–7. doi: 10.1074/jbc.M102284200 . PMID   11369773.
  15. Garton AJ, Tonks NK (1999). "Regulation of fibroblast motility by the protein tyrosine phosphatase PTP-PEST". J. Biol. Chem. 274 (6): 3811–8. doi: 10.1074/jbc.274.6.3811 . PMID   9920935.
  16. 1 2 3 Angers-Loustau A, Côté JF, Charest A, Dowbenko D, Spencer S, Lasky LA, Tremblay ML (1999). "Protein tyrosine phosphatase-PEST regulates focal adhesion disassembly, migration, and cytokinesis in fibroblasts". J. Cell Biol. 144 (5): 1019–31. doi:10.1083/jcb.144.5.1019. PMC   2148201 . PMID   10085298.
  17. Qiu W, Cobb RR, Scholz W (1998). "Inhibition of p130cas tyrosine phosphorylation by calyculin A". J. Leukoc. Biol. 63 (5): 631–5. doi: 10.1002/jlb.63.5.631 . PMID   9581808. S2CID   11177730.
  18. Blaukat A, Ivankovic-Dikic I, Grönroos E, Dolfi F, Tokiwa G, Vuori K, Dikic I (1999). "Adaptor proteins Grb2 and Crk couple Pyk2 with activation of specific mitogen-activated protein kinase cascades". J. Biol. Chem. 274 (21): 14893–901. doi: 10.1074/jbc.274.21.14893 . PMID   10329689.
  19. Wang JF, Park IW, Groopman JE (2000). "Stromal cell-derived factor-1alpha stimulates tyrosine phosphorylation of multiple focal adhesion proteins and induces migration of hematopoietic progenitor cells: roles of phosphoinositide-3 kinase and protein kinase C". Blood. 95 (8): 2505–13. doi:10.1182/blood.V95.8.2505. PMID   10753828.
  20. Gesbert F, Garbay C, Bertoglio J (1998). "Interleukin-2 stimulation induces tyrosine phosphorylation of p120-Cbl and CrkL and formation of multimolecular signaling complexes in T lymphocytes and natural killer cells". J. Biol. Chem. 273 (7): 3986–93. doi: 10.1074/jbc.273.7.3986 . PMID   9461587.
  21. Husson H, Mograbi B, Schmid-Antomarchi H, Fischer S, Rossi B (1997). "CSF-1 stimulation induces the formation of a multiprotein complex including CSF-1 receptor, c-Cbl, PI 3-kinase, Crk-II and Grb2". Oncogene. 14 (19): 2331–8. doi: 10.1038/sj.onc.1201074 . PMID   9178909.
  22. 1 2 Matsuda M, Ota S, Tanimura R, Nakamura H, Matuoka K, Takenawa T, Nagashima K, Kurata T (1996). "Interaction between the amino-terminal SH3 domain of CRK and its natural target proteins". J. Biol. Chem. 271 (24): 14468–72. doi: 10.1074/jbc.271.24.14468 . PMID   8662907.
  23. Nishihara H, Kobayashi S, Hashimoto Y, Ohba F, Mochizuki N, Kurata T, Nagashima K, Matsuda M (1999). "Non-adherent cell-specific expression of DOCK2, a member of the human CDM-family proteins". Biochim. Biophys. Acta. 1452 (2): 179–87. doi: 10.1016/S0167-4889(99)00133-0 . PMID   10559471.
  24. Hasegawa H, Kiyokawa E, Tanaka S, Nagashima K, Gotoh N, Shibuya M, Kurata T, Matsuda M (1996). "DOCK180, a major CRK-binding protein, alters cell morphology upon translocation to the cell membrane". Mol. Cell. Biol. 16 (4): 1770–6. doi:10.1128/MCB.16.4.1770. PMC   231163 . PMID   8657152.
  25. Schumacher C, Knudsen BS, Ohuchi T, Di Fiore PP, Glassman RH, Hanafusa H (1995). "The SH3 domain of Crk binds specifically to a conserved proline-rich motif in Eps15 and Eps15R". J. Biol. Chem. 270 (25): 15341–7. doi: 10.1074/jbc.270.25.15341 . PMID   7797522.
  26. 9614078 Schulze WX, Deng L, Mann M (2005). "Phosphotyrosine interactome of the ErbB-receptor kinase family". Mol. Syst. Biol. 1 (1): E1–E13. doi:10.1038/msb4100012. PMC   1681463 . PMID   16729043.
  27. Hashimoto Y, Katayama H, Kiyokawa E, Ota S, Kurata T, Gotoh N, Otsuka N, Shibata M, Matsuda M (1998). "Phosphorylation of CrkII adaptor protein at tyrosine 221 by epidermal growth factor receptor". J. Biol. Chem. 273 (27): 17186–91. doi: 10.1074/jbc.273.27.17186 . PMID   9642287.
  28. Riordan SM, Lidder S, Williams R, Skouteris GG (2000). "The beta-subunit of the hepatocyte growth factor/scatter factor (HGF/SF) receptor phosphorylates and associates with CrkII: expression of CrkII enhances HGF/SF-induced mitogenesis". Biochem. J. 350 (3): 925–32. doi:10.1042/0264-6021:3500925. PMC   1221328 . PMID   10970810.
  29. 1 2 Okada S, Pessin JE (1996). "Interactions between Src homology (SH) 2/SH3 adapter proteins and the guanylnucleotide exchange factor SOS are differentially regulated by insulin and epidermal growth factor". J. Biol. Chem. 271 (41): 25533–8. doi: 10.1074/jbc.271.41.25533 . PMID   8810325.
  30. Karas M, Koval AP, Zick Y, LeRoith D (2001). "The insulin-like growth factor I receptor-induced interaction of insulin receptor substrate-4 and Crk-II". Endocrinology. 142 (5): 1835–40. doi: 10.1210/endo.142.5.8135 . PMID   11316748.
  31. Koval AP, Karas M, Zick Y, LeRoith D (1998). "Interplay of the proto-oncogene proteins CrkL and CrkII in insulin-like growth factor-I receptor-mediated signal transduction". J. Biol. Chem. 273 (24): 14780–7. doi: 10.1074/jbc.273.24.14780 . PMID   9614078.
  32. Oehrl W, Kardinal C, Ruf S, Adermann K, Groffen J, Feng GS, Blenis J, Tan TH, Feller SM (1998). "The germinal center kinase (GCK)-related protein kinases HPK1 and KHS are candidates for highly selective signal transducers of Crk family adapter proteins". Oncogene. 17 (15): 1893–901. doi: 10.1038/sj.onc.1202108 . PMID   9788432.
  33. Ling P, Yao Z, Meyer CF, Wang XS, Oehrl W, Feller SM, Tan TH (1999). "Interaction of hematopoietic progenitor kinase 1 with adapter proteins Crk and CrkL leads to synergistic activation of c-Jun N-terminal kinase". Mol. Cell. Biol. 19 (2): 1359–68. doi:10.1128/MCB.19.2.1359. PMC   116064 . PMID   9891069.
  34. Ling P, Meyer CF, Redmond LP, Shui JW, Davis B, Rich RR, Hu MC, Wange RL, Tan TH (2001). "Involvement of hematopoietic progenitor kinase 1 in T cell receptor signaling". J. Biol. Chem. 276 (22): 18908–14. doi: 10.1074/jbc.M101485200 . PMID   11279207.
  35. Girardin SE, Yaniv M (2001). "A direct interaction between JNK1 and CrkII is critical for Rac1-induced JNK activation". EMBO J. 20 (13): 3437–46. doi:10.1093/emboj/20.13.3437. PMC   125507 . PMID   11432831.
  36. Minegishi M, Tachibana K, Sato T, Iwata S, Nojima Y, Morimoto C (1996). "Structure and function of Cas-L, a 105-kD Crk-associated substrate-related protein that is involved in beta 1 integrin-mediated signaling in lymphocytes". J. Exp. Med. 184 (4): 1365–75. doi:10.1084/jem.184.4.1365. PMC   2192828 . PMID   8879209.
  37. Ohashi Y, Tachibana K, Kamiguchi K, Fujita H, Morimoto C (1998). "T cell receptor-mediated tyrosine phosphorylation of Cas-L, a 105-kDa Crk-associated substrate-related protein, and its association of Crk and C3G". J. Biol. Chem. 273 (11): 6446–51. doi: 10.1074/jbc.273.11.6446 . PMID   9497377.
  38. 1 2 Matsumoto T, Yokote K, Take A, Takemoto M, Asaumi S, Hashimoto Y, Matsuda M, Saito Y, Mori S (2000). "Differential interaction of CrkII adaptor protein with platelet-derived growth factor alpha- and beta-receptors is determined by its internal tyrosine phosphorylation". Biochem. Biophys. Res. Commun. 270 (1): 28–33. doi:10.1006/bbrc.2000.2374. PMID   10733900.
  39. Yokote K, Hellman U, Ekman S, Saito Y, Rönnstrand L, Saito Y, Heldin CH, Mori S (1998). "Identification of Tyr-762 in the platelet-derived growth factor alpha-receptor as the binding site for Crk proteins". Oncogene. 16 (10): 1229–39. doi: 10.1038/sj.onc.1201641 . PMID   9546424.
  40. Abassi YA, Vuori K (2002). "Tyrosine 221 in Crk regulates adhesion-dependent membrane localization of Crk and Rac and activation of Rac signaling". EMBO J. 21 (17): 4571–82. doi:10.1093/emboj/cdf446. PMC   126186 . PMID   12198159.
  41. Tanaka S, Morishita T, Hashimoto Y, Hattori S, Nakamura S, Shibuya M, Matuoka K, Takenawa T, Kurata T, Nagashima K (1994). "C3G, a guanine nucleotide-releasing protein expressed ubiquitously, binds to the Src homology 3 domains of CRK and GRB2/ASH proteins". Proc. Natl. Acad. Sci. U.S.A. 91 (8): 3443–7. Bibcode:1994PNAS...91.3443T. doi: 10.1073/pnas.91.8.3443 . PMC   43593 . PMID   7512734.
  42. Zhao C, Ma H, Bossy-Wetzel E, Lipton SA, Zhang Z, Feng GS (2003). "GC-GAP, a Rho family GTPase-activating protein that interacts with signaling adapters Gab1 and Gab2". J. Biol. Chem. 278 (36): 34641–53. doi: 10.1074/jbc.M304594200 . PMID   12819203.
  43. Moon SY, Zang H, Zheng Y (2003). "Characterization of a brain-specific Rho GTPase-activating protein, p200RhoGAP". J. Biol. Chem. 278 (6): 4151–9. doi: 10.1074/jbc.M207789200 . PMID   12454018.
  44. Watanabe S, Take H, Takeda K, Yu ZX, Iwata N, Kajigaya S (2000). "Characterization of the CIN85 adaptor protein and identification of components involved in CIN85 complexes". Biochem. Biophys. Res. Commun. 278 (1): 167–74. doi:10.1006/bbrc.2000.3760. PMID   11071869.

Further reading