The advanced Stirling radioisotope generator (ASRG) is a radioisotope power system first developed at NASA's Glenn Research Center. It uses a Stirling power conversion technology to convert radioactive-decay heat into electricity for use on spacecraft. The energy conversion process used by an ASRG is significantly more efficient than previous radioisotope systems, using one quarter of the plutonium-238 to produce the same amount of power.
Despite termination of the ASRG flight development contract in 2013, NASA continues a small investment testing by private companies. Flight-ready Stirling-based units are not expected before 2028.
Development was undertaken in 2000 under joint sponsorship by the United States Department of Energy (DoE), Lockheed Martin Space Systems, and the Stirling Research Laboratory [1] at NASA's Glenn Research Center (GRC) for potential future space missions.
In 2012, NASA chose a solar-powered mission (InSight) for the Discovery 12 interplanetary mission, negating the need for a radioisotope power system for the 2018 launch.
The DOE cancelled the Lockheed contract in late 2013, after the cost had risen to over $260 million, $110 million more than originally expected. [2] [3] [4] [5] It was also decided to make use of remaining program hardware in constructing and testing a second engineering unit (for testing and research), which was completed in August 2014 in a close-out phase and shipped to GRC. [6] [7] Testing done in 2015 showed power fluctuations after just 175 hr of operation, becoming more frequent and larger in magnitude. [8]
NASA also needed more funding for continued plutonium-238 production (which will be used in existing MMRTGs for long-range probes in the meantime) and decided to use the savings from the ASRG cancellation to do so rather than take funding from science missions. [7]
Despite termination of the ASRG flight development contract, NASA continues a small investment testing Stirling converter technologies developed by Sunpower Inc. and Infinia Corporation, in addition to the unit supplied by Lockheed and a variable-conductance heat pipe supplied by Advanced Cooling Technologies, Inc. [1] [9] Flight-ready units based on Stirling technology are not expected until 2028. [10]
The higher conversion efficiency of the Stirling cycle compared with that of radioisotope thermoelectric generators (RTGs) used in previous missions (Viking, Pioneer, Voyager, Galileo, Ulysses, Cassini, New Horizons, Mars Science Laboratory, and Mars 2020) would have offered an advantage of a fourfold reduction in PuO2 fuel, at half the mass of an RTG. It would have produced 140 watts of electricity using a quarter of the plutonium an RTG or MMRTG needs. [11]
The two finished units had these expected specifications: [12]
ASRGs could be installed on a wide variety of vehicles, from orbiters, landers and rovers to balloons and planetary boats. A spacecraft proposed to use this generator was the TiME boat-lander mission to Titan, the largest moon of the planet Saturn, with a launch intended for January 2015, [13] [14] or 2023. [15] In February 2009 it was announced that NASA/ESA had given Europa Jupiter System Mission (EJSM/Laplace) mission priority ahead of the Titan Saturn System Mission (TSSM), which could have included TiME. [16] [17] In August 2012, TiME also lost the 2016 Discovery class competition to the InSight Mars lander. [18]
The Herschel Orbital Reconnaissance of the Uranian System (HORUS) mission was proposing to use three ASRGs to power an orbiter for the Uranian system. [19] Another Uranus probe concept using the ASRG was MUSE which has been evaluated as both an ESA L-Class mission and New Frontiers enhanced mission. [20] The Jupiter Europa Orbiter mission proposed using four ASRG to power an orbiter in the Jovian system. Another possibility was the Mars Geyser Hopper.
It was proposed in 2013 to fly three ASRG units on board the FIRE probe to study Jupiter's moon Io for the New Frontiers program Mission 4. [21] [22]
A nuclear electric rocket is a type of spacecraft propulsion system where thermal energy from a nuclear reactor is converted to electrical energy, which is used to drive an ion thruster or other electrical spacecraft propulsion technology. The nuclear electric rocket terminology is slightly inconsistent, as technically the "rocket" part of the propulsion system is non-nuclear and could also be driven by solar panels. This is in contrast with a nuclear thermal rocket, which directly uses reactor heat to add energy to a working fluid, which is then expelled out of a rocket nozzle.
A radioisotope thermoelectric generator, sometimes referred to as a radioisotope power system (RPS), is a type of nuclear battery that uses an array of thermocouples to convert the heat released by the decay of a suitable radioactive material into electricity by the Seebeck effect. This type of generator has no moving parts. Because they don't need solar energy, RTGs are ideal for remote and harsh environments for extended periods of time, and because they have no moving parts, there is no risk of parts wearing out or malfunctioning.
A radioisotope heater unit (RHU) is a small device that provides heat through radioactive decay. They are similar to tiny radioisotope thermoelectric generators (RTG) and normally provide about one watt of heat each, derived from the decay of a few grams of plutonium-238—although other radioactive isotopes could be used. The heat produced by these RHUs is given off continuously for several decades and, theoretically, for up to a century or more.
An atomic battery, nuclear battery, radioisotope battery or radioisotope generator is a device which uses energy from the decay of a radioactive isotope to generate electricity. Like nuclear reactors, they generate electricity from nuclear energy, but differ in that they do not use a chain reaction. Although commonly called batteries, they are technically not electrochemical and cannot be charged or recharged. They are very costly, but have an extremely long life and high energy density, and so they are typically used as power sources for equipment that must operate unattended for long periods of time, such as spacecraft, pacemakers, underwater systems and automated scientific stations in remote parts of the world.
Plutonium-238 is a radioactive isotope of plutonium that has a half-life of 87.7 years.
A Stirling radioisotope generator (SRG) is a type of radioisotope generator based on a Stirling engine powered by a large radioisotope heater unit. The hot end of the Stirling converter reaches high temperature and heated helium drives the piston, with heat being rejected at the cold end of the engine. A generator or alternator converts the motion into electricity. Given the very constrained supply of plutonium, the Stirling converter is notable for producing about four times as much electric power from the plutonium fuel as compared to a radioisotope thermoelectric generator (RTG).
The Systems Nuclear Auxiliary POWER (SNAP) program was a program of experimental radioisotope thermoelectric generators (RTGs) and space nuclear reactors flown during the 1960s by NASA.
The general-purpose heat source is a U.S. DOE-designed radioactive heat source for radioisotope thermoelectric generators (RTG) or Stirling radioisotope generators (SRG). It is meant for space applications and is packaged as a stackable module.
GPHS-RTG or general-purpose heat source — radioisotope thermoelectric generator, is a specific design of the radioisotope thermoelectric generator (RTG) used on US space missions. The GPHS-RTG was used on Ulysses (1), Galileo (2), Cassini-Huygens (3), and New Horizons (1).
Titan Saturn System Mission (TSSM) was a joint NASA–ESA proposal for an exploration of Saturn and its moons Titan and Enceladus, where many complex phenomena were revealed by Cassini. TSSM was proposed to launch in 2020, get gravity assists from Earth and Venus, and arrive at the Saturn system in 2029. The 4-year prime mission would include a two-year Saturn tour, a 2-month Titan aero-sampling phase, and a 20-month Titan orbit phase.
The multi-mission radioisotope thermoelectric generator (MMRTG) is a type of radioisotope thermoelectric generator (RTG) developed for NASA space missions such as the Mars Science Laboratory (MSL), under the jurisdiction of the United States Department of Energy's Office of Space and Defense Power Systems within the Office of Nuclear Energy. The MMRTG was developed by an industry team of Aerojet Rocketdyne and Teledyne Energy Systems.
Titan Mare Explorer (TiME) is a proposed design for a lander for Saturn's moon Titan. TiME is a relatively low-cost, outer-planet mission designed to measure the organic constituents on Titan and would have performed the first nautical exploration of an extraterrestrial sea, analyze its nature and, possibly, observe its shoreline. As a Discovery-class mission it was designed to be cost-capped at US$425 million, not counting launch vehicle funding. It was proposed to NASA in 2009 by Proxemy Research as a scout-like pioneering mission, originally as part of NASA's Discovery Program. The TiME mission design reached the finalist stage during that Discovery mission selection, but was not selected, and despite attempts in the U.S. Senate failed to get earmark funding in 2013. A related Titan Submarine has also been proposed.
Nuclear power in space is the use of nuclear power in outer space, typically either small fission systems or radioactive decay for electricity or heat. Another use is for scientific observation, as in a Mössbauer spectrometer. The most common type is a radioisotope thermoelectric generator, which has been used on many space probes and on crewed lunar missions. Small fission reactors for Earth observation satellites, such as the TOPAZ nuclear reactor, have also been flown. A radioisotope heater unit is powered by radioactive decay and can keep components from becoming too cold to function, potentially over a span of decades.
The Mars Geyser Hopper (MGH) was proposed in 2012 as a NASA design reference mission for a Discovery-class spacecraft concept that would investigate the springtime carbon dioxide Martian geysers found in regions around the south pole of Mars.
AVIATR was a proposed airplane mission concept to Titan, a moon of Saturn. The concept was developed in 2011 by a team of scientists led by Jason W. Barnes at the University of Idaho. Compared to Earth, Titan has about one-seventh the gravity but four times the atmospheric density. These conditions make it easier to fly there.
Austere Human Missions to Mars is a concept for a human mission to Mars by the United States space agency, NASA. Released in 2009, it proposed a modified and even less costly version of Design Reference Architecture (DRA) 5.0, itself a combination of nearly 20 years of Mars planning design work. The mission profile was for a conjunction class with a long surface stay, pre-deployed cargo, aerocapture and propulsive capture, and some in-situ resource production. As of 2015, the concept had not yet been adapted to the Space Launch System that replaced NASA's Constellation program in 2011.
MUSE is a European proposal for a dedicated mission to the planet Uranus to study its atmosphere, interior, moons, rings, and magnetosphere. It is proposed to be launched with an Ariane 6 in 2026, travel for 16.5 years to reach Uranus in 2044, and would operate until 2050.
Dragonfly is a planned spacecraft and NASA mission to send a robotic rotorcraft to the surface of Titan, the largest moon of Saturn. It is planned to be launched in June 2027. It would be the first aircraft on Titan and is intended to make the first powered and fully controlled atmospheric flight on any moon, with the intention of studying prebiotic chemistry and extraterrestrial habitability. It would then use its vertical takeoffs and landings (VTOL) capability to move between exploration sites.
FIRE is a concept mission to Jupiter's innermost major moon Io. The mission was first presented in 2012 for a possible future consideration by NASA's New Frontiers program.
OCEANUS is a mission concept conceived in 2016 and presented in 2017 as a potential future contestant as a New Frontiers program mission to the planet Uranus. The concept was developed by the Astronautical engineering students of Purdue University during the 2017 NASA/JPL Planetary Science Summer School. OCEANUS is an orbiter, which would enable a detailed study of the structure of the planet's magnetosphere and interior structure that would not be possible with a flyby mission.