The biological treatment of wastewater in the sewage treatment plant is often accomplished using conventional activated sludge systems. These systems generally require large surface areas for treatment and biomass separation units due to the generally poor settling properties of the sludge. Aerobic granules are a type of sludge that can self-immobilize flocs and microorganisms into spherical and strong compact structures. The advantages of aerobic granular sludge are excellent settleability, high biomass retention, simultaneous nutrient removal and tolerance to toxicity. Recent studies show that aerobic granular sludge treatment could be a potentially good method to treat high strength wastewaters with nutrients, toxic substances.
The aerobic granular sludge usually is cultivated in SBR (sequencing batch reactor) and applied successfully as a wastewater treatment for high strength wastewater, toxic wastewater and domestic wastewater. Compared with conventional aerobic granular processes for COD removal, current research focuses more on simultaneous nutrient removal, particularly COD, phosphorus and nitrogen, under pressure conditions, such as high salinity or thermophilic condition.
In recent years, new technologies have been developed to improve settleability. The use of aerobic granular sludge technology is one of them.
Proponents of aerobic granular sludge technology claim "it will play an important role as an innovative technology alternative to the present activated sludge process in industrial and municipal wastewater treatment in the near future" [1] and that it "can be readily established and profitably used in activated sludge plants". [2] However, in 2011 it was characterised as "not yet established as a large-scale application ... with limited and unpublished full-scale applications for municipal wastewater treatment." [3]
The following definition differentiates an aerobic granule from a simple floc with relatively good settling properties and came out of discussions which took place at the 1st IWA-Workshop Aerobic Granular Sludge in Munich (2004): [2]
Granules making up aerobic granular activated sludge are to be understood as aggregates of microbial origin, which do not coagulate under reduced hydrodynamic shear, and which settle significantly faster than activated sludge flocs
— de Kreuk et al. 2005 [4]
Granular sludge biomass is developed in sequencing batch reactors (SBR) and without carrier materials. These systems fulfil most of the requirements for their formation as:
Granular activated sludge is also developed in flow-through reactors using the Hybrid Activated Sludge (HYBACS) process, [8] comprising an attached-growth reactor with short retention time upstream of a suspended growth reactor. The attached bacteria in the first reactor, known as a SMART unit, are exposed to a constant high COD, triggering the expression of high concentrations of hydrolytic enzymes in the EPS layer around the bacteria.[ citation needed ] The accelerated hydrolysis liberates soluble readily-degradable COD which promotes the formation of granular activated sludge.[ citation needed ]
The development of biomass in the form of aerobic granules is being studied for its application in the removal of organic matter, nitrogen and phosphorus compounds from wastewater. Aerobic granules in an aerobic SBR present several advantages compared to conventional activated sludge process such as:
The HYBACS process has the additional benefit of being a flow-through process, thus avoiding the complexities of SBR systems. It is also readily applied to the upgrading of existing flow-through activated sludge processes, by installing the attached growth reactors upstream of the aeration tank. Upgrading to granular activated sludge process enables the capacity of an existing wastewater treatment plant to be doubled. [10]
Synthetic wastewater was used in most of the works carried out with aerobic granules. These works were mainly focused on the study of granules formation, stability and nutrient removal efficiencies under different operational conditions and their potential use to remove toxic compounds. The potential of this technology to treat industrial wastewater is under study, some of the results:
Aerobic granulation technology for the application in wastewater treatment is widely developed at laboratory scales. The large-scale experience is growing rapidly and multiple institutions are making efforts to improve this technology:
The feasibility study showed that the aerobic granular sludge technology seems very promising (de Bruin et al., 2004. [22] Based on total annual costs a GSBR (Granular sludge sequencing batch reactors) with pre-treatment and a GSBR with post-treatment proves to be more attractive than the reference activated sludge alternatives (6–16%). A sensitivity analysis shows that the GSBR technology is less sensitive to land price and more sensitive to rain water flow. Because of the high allowable volumetric load the footprint of the GSBR variants is only 25% compared to the references. However, the GSBR with only primary treatment cannot meet the present effluent standards for municipal wastewater, mainly because of exceeding the suspended solids effluent standard caused by washout of not well settleable biomass.
Aerobic granulation technology is already successfully applied for treatment of wastewater.
Anammox, an abbreviation for "anaerobic ammonium oxidation", is a globally important microbial process of the nitrogen cycle that takes place in many natural environments. The bacteria mediating this process were identified in 1999, and were a great surprise for the scientific community. In the anammox reaction, nitrite and ammonium ions are converted directly into diatomic nitrogen and water.
Biological augmentation is the addition of archaea or bacterial cultures required to speed up the rate of degradation of a contaminant. Organisms that originate from contaminated areas may already be able to break down waste, but perhaps inefficiently and slowly.
Waste stabilization ponds are ponds designed and built for wastewater treatment to reduce the organic content and remove pathogens from wastewater. They are man-made depressions confined by earthen structures. Wastewater or "influent" enters on one side of the waste stabilization pond and exits on the other side as "effluent", after spending several days in the pond, during which treatment processes take place.
The activated sludgeprocess is a type of biological wastewater treatment process for treating sewage or industrial wastewaters using aeration and a biological floc composed of bacteria and protozoa. It is one of several biological wastewater treatment alternatives in secondary treatment, which deals with the removal of biodegradable organic matter and suspended solids. It uses air and microorganisms to biologically oxidize organic pollutants, producing a waste sludge containing the oxidized material.
Upflow anaerobic sludge blanket (UASB) technology, normally referred to as UASB reactor, is a form of anaerobic digester that is used for wastewater treatment.
Enhanced biological phosphorus removal (EBPR) is a sewage treatment configuration applied to activated sludge systems for the removal of phosphate.
Secondary treatment is the removal of biodegradable organic matter from sewage or similar kinds of wastewater. The aim is to achieve a certain degree of effluent quality in a sewage treatment plant suitable for the intended disposal or reuse option. A "primary treatment" step often precedes secondary treatment, whereby physical phase separation is used to remove settleable solids. During secondary treatment, biological processes are used to remove dissolved and suspended organic matter measured as biochemical oxygen demand (BOD). These processes are performed by microorganisms in a managed aerobic or anaerobic process depending on the treatment technology. Bacteria and protozoa consume biodegradable soluble organic contaminants while reproducing to form cells of biological solids. Secondary treatment is widely used in sewage treatment and is also applicable to many agricultural and industrial wastewaters.
Sequencing batch reactors (SBR) or sequential batch reactors are a type of activated sludge process for the treatment of wastewater. SBRs treat wastewater such as sewage or output from anaerobic digesters or mechanical biological treatment facilities in batches. Oxygen is bubbled through the mixture of wastewater and activated sludge to reduce the organic matter. The treated effluent may be suitable for discharge to surface waters or possibly for use on land.
Aerobic granular reactors (AGR) or Aerobic granular sludge (AGS) are a community of microbial organisms, typically around 0.5-3mm in diameter, that remove carbon, nitrogen, phosphorus and other pollutants in a single sludge system. It can also be used for wastewater treatments. Aerobic granular sludge is composed of bacteria, protozoa and fungi, which allows oxygen to follow in and biologically oxidize organic pollutants. AGS is a type of wastewater treatment process for sewages and/or industrial waste treatment. AGR was first discovered by UK engineers, Edward Ardern and W.T. Lockett who were researching better ways for sewage disposal. Another scientist by the name of Dr. Gilbert Fowler, who was at the University of Manchester working on an experiment based on aeration of sewage in a bottle coated with algae. Eventually, all three scientists were able to collaborate with one another to discover AGR/AGS.
The following is a partial list of types of anaerobic digesters. These processes and systems harness anaerobic digestion for purposes such as treatment of biowaste, animal manure, sewage and biogas generation. Anaerobic digesters can be categorized according to several criteria: by whether the biomass is fixed to a surface or can mix freely with the reactor liquid ; by the organic loading rate ; by centralized plants and decentralized plants. Most anaerobic digesters worldwide are built based on wet-type anaerobic digestion, wherein biomass and water are mixed in equal amounts to form a slurry in which the content of total solids (TS) is about 10-15%. While this type is suitable for most regions, it becomes a challenge in large plants where it necessitates the use of large quantities of water every day, often in water-scare areas. Solid-state type digesters, as opposed to the wet-type digesters, reduces the need to dilute the biomass before using it for digestion. solid-state type digesters can handle dry, stackable biomass with a high percentage of solids, and consists of gas-tight chambers called fermenter boxes working in batch-mode that are periodically loaded and unloaded with solid biomass and manure. The widely used UASB reactor, for example, is a suspended-growth high-rate digester, with its biomass clumped into granules that will settle relatively easily and with typical loading rates in the range 5-10 kgCOD/m3/d.
Simultaneous nitrification–denitrification (SNdN) is a wastewater treatment process. Microbial simultaneous nitrification-denitrification is the conversion of the ammonium ion to nitrogen gas in a single bioreactor. The process is dependent on floc characteristics, reaction kinetics, mass loading of readily biodegradable chemical oxygen demand {rbCOD}, and the dissolved oxygen {DO} concentration.
Sewage treatment is a type of wastewater treatment which aims to remove contaminants from sewage to produce an effluent that is suitable to discharge to the surrounding environment or an intended reuse application, thereby preventing water pollution from raw sewage discharges. Sewage contains wastewater from households and businesses and possibly pre-treated industrial wastewater. There are a high number of sewage treatment processes to choose from. These can range from decentralized systems to large centralized systems involving a network of pipes and pump stations which convey the sewage to a treatment plant. For cities that have a combined sewer, the sewers will also carry urban runoff (stormwater) to the sewage treatment plant. Sewage treatment often involves two main stages, called primary and secondary treatment, while advanced treatment also incorporates a tertiary treatment stage with polishing processes and nutrient removal. Secondary treatment can reduce organic matter from sewage, using aerobic or anaerobic biological processes. A so-called quarternary treatment step can also be added for the removal of organic micropollutants, such as pharmaceuticals. This has been implemented in full-scale for example in Sweden.
Membrane bioreactors are combinations of membrane processes like microfiltration or ultrafiltration with a biological wastewater treatment process, the activated sludge process. These technologies are now widely used for municipal and industrial wastewater treatment. The two basic membrane bioreactor configurations are the submerged membrane bioreactor and the side stream membrane bioreactor. In the submerged configuration, the membrane is located inside the biological reactor and submerged in the wastewater, while in a side stream membrane bioreactor, the membrane is located outside the reactor as an additional step after biological treatment.
Activated sludge model is a generic name for a group of mathematical methods to model activated sludge systems. The research in this area is coordinated by a task group of the International Water Association (IWA). Activated sludge models are used in scientific research to study biological processes in hypothetical systems. They can also be applied on full scale wastewater treatment plants for optimisation, when carefully calibrated with reference data for sludge production and nutrients in the effluent.
The adsorption/bio-oxidation process is a two-stage modification of the activated sludge process used for wastewater treatment. It consists of a high-loaded A-stage and low-loaded B-stage. The process is operated without a primary clarifier, with the A-stage being an open dynamic biological system. Both stages have separate settling tanks and sludge recycling lines, thus maintaining unique microbial communities in both reactors.
A vermifilter is an aerobic treatment system, consisting of a biological reactor containing media that filters organic material from wastewater. The media also provides a habitat for aerobic bacteria and composting earthworms that purify the wastewater by removing pathogens and oxygen demand. The "trickling action" of the wastewater through the media dissolves oxygen into the wastewater, ensuring the treatment environment is aerobic for rapid decomposition of organic substances.
Moving bed biofilm reactor (MBBR) is a type of wastewater treatment process that was first invented by Professor Hallvard Ødegaard at Norwegian University of Science and Technology in the late 1980s. The process takes place in an aeration tank with plastic carriers that a biofilm can grow on. The compact size and cheap wastewater treatment costs offers many advantages for the system. The main objective of using MBBR being water reuse and nutrient removal or recovery. In theory, wastewater will be no longer considered waste, it can be considered a resource.
Nereda is a wastewater treatment technology invented by Mark van Loosdrecht of the Delft University of Technology in the Netherlands. The technology is based on aerobic granulation and is a modification of the activated sludge process.
Oxygenic photogranules (OPGs) are a type of biological aggregate with an approximately spherical form, typically from a millimeter to a centimeter scale. OPGs are characterized by the cloth-like layer of phototrophic organisms, predominantly filamentous cyanobacteria of the order Oscillatoriales. Oxygen production by these phototrophs through photosynthesis is typically coupled to oxygen consumption of heterotrophic biomass, releasing CO2 that is presumably utilised in a syntrophic relationship by autotrophic phototrophs.