Aerobic granulation

Last updated

The biological treatment of wastewater in the sewage treatment plant is often accomplished using conventional activated sludge systems. These systems generally require large surface areas for treatment and biomass separation units due to the generally poor settling properties of the sludge. Aerobic granules are a type of sludge that can self-immobilize flocs and microorganisms into spherical and strong compact structures. The advantages of aerobic granular sludge are excellent settleability, high biomass retention, simultaneous nutrient removal and tolerance to toxicity. Recent studies show that aerobic granular sludge treatment could be a potentially good method to treat high strength wastewaters with nutrients, toxic substances.

Contents

The aerobic granular sludge usually is cultivated in SBR (sequencing batch reactor) and applied successfully as a wastewater treatment for high strength wastewater, toxic wastewater and domestic wastewater. Compared with conventional aerobic granular processes for COD removal, current research focuses more on simultaneous nutrient removal, particularly COD, phosphorus and nitrogen, under pressure conditions, such as high salinity or thermophilic condition.

In recent years, new technologies have been developed to improve settleability. The use of aerobic granular sludge technology is one of them.

Aerobic Granules derived from municipal sewage AGS application Aerobic granular sludge Nereda.jpg
Aerobic Granules derived from municipal sewage AGS application
Aerobic Granules Granulos.jpg
Aerobic Granules

Context

Proponents of aerobic granular sludge technology claim "it will play an important role as an innovative technology alternative to the present activated sludge process in industrial and municipal wastewater treatment in the near future" [1] and that it "can be readily established and profitably used in activated sludge plants". [2] However, in 2011 it was characterised as "not yet established as a large-scale application ... with limited and unpublished full-scale applications for municipal wastewater treatment." [3]

Aerobic granular biomass

The following definition differentiates an aerobic granule from a simple floc with relatively good settling properties and came out of discussions which took place at the 1st IWA-Workshop Aerobic Granular Sludge in Munich (2004): [2]

Granules making up aerobic granular activated sludge are to be understood as aggregates of microbial origin, which do not coagulate under reduced hydrodynamic shear, and which settle significantly faster than activated sludge flocs

de Kreuk et al. 2005 [4]

Formation of aerobic granules

SBR Reactor, with aerobic granules ReactorSBR.JPG
SBR Reactor, with aerobic granules

Granular sludge biomass is developed in sequencing batch reactors (SBR) and without carrier materials. These systems fulfil most of the requirements for their formation as:

Feast – Famine regime: short feeding periods must be selected to create feast and famine periods (Beun et al. 1999 [5] ), characterized by the presence or absence of organic matter in the liquid media, respectively. With this feeding strategy the selection of the appropriate micro-organisms to form granules is achieved. When the substrate concentration in the bulk liquid is high, the granule-former organisms can store the organic matter in form of poly-β-hydroxybutyrate to be consumed in the famine period, giving an advantage over filamentous organisms. When an anaerobic feeding is applied this factor is enhanced, minimising the importance of short settling time and higher hydrodynamic forces.
Short settling time: This hydraulic selection pressure on the microbial community allows the retention granular biomass inside the reactor while flocculent biomass is washed-out. (Qin et al. 2004 [6] )
Hydrodynamic shear force : Evidences show that the application of high shear forces favours the formation of aerobic granules and the physical granule integrity. It was found that aerobic granules could be formed only above a threshold shear force value in terms of superficial upflow air velocity above 1.2 cm/s in a column SBR, and more regular, rounder, and more compact aerobic granules were developed at high hydrodynamic shear forces (Tay et al., 2001 [7] ).

Granular activated sludge is also developed in flow-through reactors using the Hybrid Activated Sludge (HYBACS) process, [8] comprising an attached-growth reactor with short retention time upstream of a suspended growth reactor. The attached bacteria in the first reactor, known as a SMART unit, are exposed to a constant high COD, triggering the expression of high concentrations of hydrolytic enzymes in the EPS layer around the bacteria.[ citation needed ] The accelerated hydrolysis liberates soluble readily-degradable COD which promotes the formation of granular activated sludge.[ citation needed ]

Advantages

The development of biomass in the form of aerobic granules is being studied for its application in the removal of organic matter, nitrogen and phosphorus compounds from wastewater. Aerobic granules in an aerobic SBR present several advantages compared to conventional activated sludge process such as:

Stability and flexibility: the SBR system can be adapted to fluctuating conditions with the ability to withstand shock and toxic loadings
Low energy requirements: the aerobic granular sludge process has a higher aeration efficiency due to operation at increased height, while there are neither return sludge or nitrate recycle streams nor mixing and propulsion requirements
Reduced footprint: The increase in biomass concentration that is possible because of the high settling velocity of the aerobic sludge granules and the absence of a final settler result in a significant reduction in the required footprint.
Good biomass retention: higher biomass concentrations inside the reactor can be achieved, and higher substrate loading rates can be treated.
Presence of aerobic and anoxic zones inside the granules: to perform simultaneously different biological processes in the same system (Beun et al. 1999 [5] )
Reduced investment and operational costs: the cost of running a wastewater treatment plant working with aerobic granular sludge can be reduced by at least 20% and space requirements can be reduced by as much as 75% (de Kreuk et al., 2004 [9] ).

The HYBACS process has the additional benefit of being a flow-through process, thus avoiding the complexities of SBR systems. It is also readily applied to the upgrading of existing flow-through activated sludge processes, by installing the attached growth reactors upstream of the aeration tank. Upgrading to granular activated sludge process enables the capacity of an existing wastewater treatment plant to be doubled. [10]

Treatment of industrial wastewater

Synthetic wastewater was used in most of the works carried out with aerobic granules. These works were mainly focused on the study of granules formation, stability and nutrient removal efficiencies under different operational conditions and their potential use to remove toxic compounds. The potential of this technology to treat industrial wastewater is under study, some of the results:

Pilot research in aerobic granular sludge

Aerobic granulation technology for the application in wastewater treatment is widely developed at laboratory scales. The large-scale experience is growing rapidly and multiple institutions are making efforts to improve this technology:

The feasibility study showed that the aerobic granular sludge technology seems very promising (de Bruin et al., 2004. [22] Based on total annual costs a GSBR (Granular sludge sequencing batch reactors) with pre-treatment and a GSBR with post-treatment proves to be more attractive than the reference activated sludge alternatives (6–16%). A sensitivity analysis shows that the GSBR technology is less sensitive to land price and more sensitive to rain water flow. Because of the high allowable volumetric load the footprint of the GSBR variants is only 25% compared to the references. However, the GSBR with only primary treatment cannot meet the present effluent standards for municipal wastewater, mainly because of exceeding the suspended solids effluent standard caused by washout of not well settleable biomass.

Full scale application

Aerobic granulation technology is already successfully applied for treatment of wastewater.

Full-scale municipal sewage Nereda application (4000 m3.d-1) at the Gansbaai STP in South Africa Nereda Gansbaai STP.jpg
Full-scale municipal sewage Nereda application (4000 m3.d-1) at the Gansbaai STP in South Africa
Full-scale municipal sewage Nereda application Epe the Netherlands Nereda Epe STP.jpg
Full-scale municipal sewage Nereda application Epe the Netherlands
Full-scale industrial sewage Nereda application Vika the Netherlands Vika Nereda STP.jpg
Full-scale industrial sewage Nereda application Vika the Netherlands

See also

Related Research Articles

<span class="mw-page-title-main">Anammox</span> Anaerobic ammonium oxidation, a microbial process of the nitrogen cycle

Anammox, an abbreviation for anaerobic ammonium oxidation, is a globally important microbial process of the nitrogen cycle that takes place in many natural environments. The bacteria mediating this process were identified in 1999, and were a great surprise for the scientific community. In the anammox reaction, nitrite and ammonium ions are converted directly into diatomic nitrogen and water.

<span class="mw-page-title-main">Activated sludge</span> Wastewater treatment process using aeration and a biological floc

The activated sludgeprocess is a type of biological wastewater treatment process for treating sewage or industrial wastewaters using aeration and a biological floc composed of bacteria and protozoa. It uses air and microorganisms to biologically oxidize organic pollutants, producing a waste sludge containing the oxidized material. The general arrangement of an activated sludge process for removing carbonaceous pollution includes the following items: An aeration tank where air is injected in the mixed liquor. This is followed by a settling tank to allow the biological flocs to settle, thus separating the biological sludge from the clear treated water. Part of the waste sludge is recycled to the aeration tank and the remaining waste sludge is removed for further treatment and ultimate disposal.

<span class="mw-page-title-main">Anaerobic digestion</span> Processes by which microorganisms break down biodegradable material in the absence of oxygen

Anaerobic digestion is a sequence of processes by which microorganisms break down biodegradable material in the absence of oxygen. The process is used for industrial or domestic purposes to manage waste or to produce fuels. Much of the fermentation used industrially to produce food and drink products, as well as home fermentation, uses anaerobic digestion.

<span class="mw-page-title-main">Upflow anaerobic sludge blanket digestion</span>

Upflow anaerobic sludge blanket (UASB) technology, normally referred to as UASB reactor, is a form of anaerobic digester that is used for wastewater treatment.

The batch reactor is the generic term for a type of vessel widely used in the process industries. Its name is something of a misnomer since vessels of this type are used for a variety of process operations such as solids dissolution, product mixing, chemical reactions, batch distillation, crystallization, liquid/liquid extraction and polymerization. In some cases, they are not referred to as reactors but have a name which reflects the role they perform.

<span class="mw-page-title-main">Secondary treatment</span> Biological treatment process for wastewater or sewage

Secondary treatment is the removal of biodegradable organic matter from sewage or similar kinds of wastewater. The aim is to achieve a certain degree of effluent quality in a sewage treatment plant suitable for the intended disposal or reuse option. A "primary treatment" step often precedes secondary treatment, whereby physical phase separation is used to remove settleable solids. During secondary treatment, biological processes are used to remove dissolved and suspended organic matter measured as biochemical oxygen demand (BOD). These processes are performed by microorganisms in a managed aerobic or anaerobic process depending on the treatment technology. Bacteria and protozoa consume biodegradable soluble organic contaminants while reproducing to form cells of biological solids. Secondary treatment is widely used in sewage treatment and is also applicable to many agricultural and industrial wastewaters.

<span class="mw-page-title-main">Sequencing batch reactor</span> Type of activated sludge process for the treatment of wastewater

Sequencing batch reactors (SBR) or sequential batch reactors are a type of activated sludge process for the treatment of wastewater. SBR reactors treat wastewater such as sewage or output from anaerobic digesters or mechanical biological treatment facilities in batches. Oxygen is bubbled through the mixture of wastewater and activated sludge to reduce the organic matter. The treated effluent may be suitable for discharge to surface waters or possibly for use on land.

<span class="mw-page-title-main">Sewage sludge treatment</span> Processes to manage and dispose of sludge during sewage treatment

Sewage sludge treatment describes the processes used to manage and dispose of sewage sludge produced during sewage treatment. Sludge treatment is focused on reducing sludge weight and volume to reduce transportation and disposal costs, and on reducing potential health risks of disposal options. Water removal is the primary means of weight and volume reduction, while pathogen destruction is frequently accomplished through heating during thermophilic digestion, composting, or incineration. The choice of a sludge treatment method depends on the volume of sludge generated, and comparison of treatment costs required for available disposal options. Air-drying and composting may be attractive to rural communities, while limited land availability may make aerobic digestion and mechanical dewatering preferable for cities, and economies of scale may encourage energy recovery alternatives in metropolitan areas.

Aerobic granular reactor is a type of waste treatment facility.

<span class="mw-page-title-main">Anaerobic digester types</span>

The following is a partial list of types of anaerobic digesters. These processes and systems harness anaerobic digestion for purposes such as treatment of biowaste, animal manure, sewage and biogas generation. Anaerobic digesters can be categorized according to several criteria: by whether the biomass is fixed to a surface or can mix freely with the reactor liquid ; by the organic loading rate ; by centralized plants and decentralized plants. Most anaerobic digesters worldwide are built based on wet-type anaerobic digestion, wherein biomass and water are mixed in equal amounts to form a slurry in which the content of total solids (TS) is about 10-15%. While this type is suitable for most regions, it becomes a challenge in large plants where it necessitates the use of large quantities of water every day, often in water-scare areas. Solid-state type digesters, as opposed to the wet-type digesters, reduces the need to dilute the biomass before using it for digestion. solid-state type digesters can handle dry, stackable biomass with a high percentage of solids, and consists of gas-tight chambers called fermenter boxes working in batch-mode that are periodically loaded and unloaded with solid biomass and manure. The widely used UASB reactor, for example, is a suspended-growth high-rate digester, with its biomass clumped into granules that will settle relatively easily and with typical loading rates in the range 5-10 kgCOD/m3/d.

Simultaneous nitrification–denitrification (SNdN) is a wastewater treatment process. Microbial simultaneous nitrification-denitrification is the conversion of the ammonium ion to nitrogen gas in a single bioreactor. The process is dependent on floc characteristics, reaction kinetics, mass loading of readily biodegradable chemical oxygen demand, rbCOD, and the dissolved oxygen, DO, concentration

<span class="mw-page-title-main">Sewage treatment</span> Process of removing contaminants from municipal wastewater

Sewage treatment is a type of wastewater treatment which aims to remove contaminants from sewage to produce an effluent that is suitable for discharge to the surrounding environment or an intended reuse application, thereby preventing water pollution from raw sewage discharges. Sewage contains wastewater from households and businesses and possibly pre-treated industrial wastewater. There are a high number of sewage treatment processes to choose from. These can range from decentralized systems to large centralized systems involving a network of pipes and pump stations which convey the sewage to a treatment plant. For cities that have a combined sewer, the sewers will also carry urban runoff (stormwater) to the sewage treatment plant. Sewage treatment often involves two main stages, called primary and secondary treatment, while advanced treatment also incorporates a tertiary treatment stage with polishing processes and nutrient removal. Secondary treatment can reduce organic matter from sewage,  using aerobic or anaerobic biological processes.

Membrane bioreactor (MBR) is a combination of membrane processes like microfiltration or ultrafiltration with a biological wastewater treatment process, the activated sludge process. It is now widely used for municipal and industrial wastewater treatment. In general, there are two different MBR configurations: (1) submerged membrane bioreactor (SMBR) and (2) side stream membrane bioreactor. In the first configuration, the membrane is located inside the biological reactor, submerged in the wastewater. In the latter configuration, the membrane is located outside the reactor, as an additional step after biological treatment.

Activated sludge model is a generic name for a group of mathematical methods to model activated sludge systems. The research in this area is coordinated by a task group of the International Water Association (IWA). Activated sludge models are used in scientific research to study biological processes in hypothetical systems. They can also be applied on full scale wastewater treatment plants for optimisation, when carefully calibrated with reference data for sludge production and nutrients in the effluent.

The adsorption/bio-oxidation process is a two-stage modification of the activated sludge process used for wastewater treatment. It consists of a high-loaded A-stage and low-loaded B-stage. The process is operated without a primary clarifier, with the A-stage being an open dynamic biological system. Both stages have separate settling tanks and sludge recycling lines, thus maintaining unique microbial communities in both reactors.

<span class="mw-page-title-main">Vermifilter</span> Aerobic treatment system, consisting of a biological reactor containing media

A vermifilter is an aerobic treatment system, consisting of a biological reactor containing media that filters organic material from wastewater. The media also provides a habitat for aerobic bacteria and composting earthworms that purify the wastewater by removing pathogens and oxygen demand. The "trickling action" of the wastewater through the media dissolves oxygen into the wastewater, ensuring the treatment environment is aerobic for rapid decomposition of organic substances.

<span class="mw-page-title-main">Moving bed biofilm reactor</span> Type of wastewater treatment

Moving bed biofilm reactor (MBBR) is a type of wastewater treatment process that was first invented by Prof. Hallvard Ødegaard at Norwegian University of Science and Technology in the late 1980s. It was commercialized by Kaldnes Miljöteknologi. There are over 700 wastewater treatment systems installed in over 50 countries. Currently, there are various suppliers of MBBR systems.

<span class="mw-page-title-main">Nereda</span>

Nereda is a wastewater treatment technology invented by Mark van Loosdrecht of the Delft University of Technology in the Netherlands. The technology is based on aerobic granulation and is a modification of the activated sludge process.

<span class="mw-page-title-main">Oxygenic photogranules</span>

Oxygenic photogranules (OPGs) are a type of biological aggregate with an approximately spherical form, typically from a millimeter to a centimeter scale. OPGs are characterized by the cloth-like layer of phototrophic organisms, predominantly filamentous cyanobacteria of the order Oscillatoriales. Oxygen production by these phototrophs through photosynthesis is typically coupled to oxygen consumption of heterotrophic biomass, releasing CO2 that is presumably utilised in a syntrophic relationship by autotrophic phototrophs.

References

  1. Ni, Bing-Jie (2013). Formation, Characterization and Mathematical Modeling of the Aerobic Granular Sludge. Springer. ISBN   978-3-642-31280-9.
  2. 1 2 Bathe, Stephan (2005). Aerobic granular sludge : selected proceedings of the 1st IWA-workshop aerobic granular sludge organised by the Institute of water quality control and waste management of the technical University of Munich (TUM) in cooperation with the Institute of advanced studies on sustainability of the European Academy of sciences and arts (EASA) and the international water association (IWA) (1st ed.). Londen: IWA publishing. ISBN   978-1843395096.
  3. Gao, Dawen; Liu, Lin; Liang, Hong; Wu, Wei-Min (1 June 2011). "Aerobic granular sludge: characterization, mechanism of granulation and application to wastewater treatment" (PDF). Critical Reviews in Biotechnology. 31 (2): 137–152. doi:10.3109/07388551.2010.497961. PMID   20919817. S2CID   6503481 . Retrieved 11 December 2012.
  4. de Kreuk M.K., McSwain B.S., Bathe S., Tay S.T.L., Schwarzenbeck and Wilderer P.A. (2005). "Discussion outcomes". Ede. In: Aerobic Granular Sludge. Water and Environmental Management Series. IWA Publishing. Munich, pp. 165–169.
  5. 1 2 Beun J.J., Hendriks A., Van Loosdrecht M.C.M., Morgenroth E., Wilderer P.A. and Heijnen J.J. (1999). Aerobic granulation in a sequencing batch reactor. Water Research, Vol. 33, No. 10, pp. 2283–2290.
  6. Qin L. Liu Y. and Tay J-H (2004). Effect of settling time on aerobic granulation in sequencing batch reactor. Biochemical Engineering Journal, Vol. 21, No. 1, pp. 47–52.
  7. Tay J.-H., Liu Q.-S. and Liu Y. (2001). The effects of shear force on the formation, structure and metabolism of aerobic granules. Applied Microbiology and Biotechnology, Vol. 57, Nos. 1–2, pp. 227–233.
  8. "Technology". Archived from the original on 2015-08-28. Retrieved 2015-09-03.
  9. de Kreuk, M.K., Bruin L.M.M. and van Loosdrecht M.C.M. (2004). Aerobic granular sludge: From idea to pilot plant.. In Wilderer, P.A. (Ed.), Granules 2004. IWA workshop Aerobic Granular Sludge, Technical University of Munich, 26–28 September 2004 (pp. 1–12). London: IWA.
  10. "Tubli Municipal Sewage Rev 8" (PDF). Archived from the original (PDF) on 2015-05-14. Retrieved 2015-09-03.
  11. Arrojo B., Mosquera-Corral A., Garrido J.M. and Méndez R. (2004) Aerobic granulation with industrial wastewater in sequencing batch reactors. Water Research, Vol. 38, Nos. 14–15, pp. 3389 – 3399
  12. Schwarzenbeck N., Erley R. and Wilderer P.A. (2004). Aerobic granular sludge in an SBR-system treating wastewater rich in particulate matter. Water Science and Technology , Vol. 49, Nos. 11–12, pp. 41–46.
  13. Cassidy D.P. and Belia E. (2005). Nitrogen and phosphorus removal from an abattoir wastewater in a SBR with aerobic granular sludge. Water Research, Vol. 39, No. 19, pp. 4817–4823.
  14. Inizan M., Freval A., Cigana J. and Meinhold J. (2005). Aerobic granulation in a sequencing batch reactor (SBR) for industrial wastewater treatment. Water Science and Technology, Vol. 52, Nos. 10–11, pp. 335–343.
  15. Tsuneda S., Ogiwara M., Ejiri Y. and Hirata A. (2006). High-rate nitrification using aerobic granular sludge. Water Science and Technology, 53 (3), 147–154.
  16. Shams Qamar Usmani, Suhail Sabir, Izharul Haq Farooqui and Anees Ahmad (2008) Biodegradation of Phenols and p-Cresol by Sequential Batch Reactor proc. International Conference on Environmental Research and Technology (ICERT 2008), scope 10, pp 906–910, ISBN   978-983-3986-29-3.
  17. Figueroa M., Mosquera-Corral A., Campos J. L. and Méndez R. (2008). Treatment of saline wastewater in SBR aerobic granular reactors. Water Science and Technology, 58 (2), 479–485.
  18. Farooqi I.H., Basheer F. and Ahmad T.(2008). Studies on Biodegradation of Phenols and m -Cresols by Upflow Anaerobic Sludge Blanket and Aerobic Sequential Batch Reactor.Global Nest Journal,10(1), 39–46.
  19. López–Palau S., Dosta J. and Mata-Álvarez J. (2009). Start-up of an aerobic granular sequencing batch reactor for the treatment of winery wastewater. Water Science and Technology, 60 (4), 1049–1054.
  20. Dobbeleers, T., Daens, D., Miele, S., D’aes, J., Caluwé, M., Geuens, L., Dries, J., 2017. Performance of aerobic nitrite granules treating an anaerobic pre-treated wastewater originating from the potato industry. Bioresour. Technol. 226, 211–219.
  21. Caluwé, M., Dobbeleers, T., D’aes, J., Miele, S., Akkermans, V., Daens, D., Geuens, L., Kiekens, F., Blust, R., Dries, J., 2017. Formation of aerobic granular sludge during the treatment of petrochemical wastewater. Bioresour. Technol. 238, 559–567.
  22. de Bruin L.M.M., de Kreuk M.K., van der Roest H.F.R., Uijterlinde C. and van Loosdrecht M.C.M. (2004). Aerobic granular sludge technology: and alternative to activated sludge. Water Science and Technology, Vol. 49, Nos. 11–12, pp. 1–7)

General references