Agenor Mafra-Neto

Last updated

Agenor Mafra-Neto
Agenor Mafra-Neto Head Shot.jpg
Mafra-Neto in 2005
Born
Agenor Mafra-Neto

(1964-05-31) May 31, 1964 (age 59)
Brazil
NationalityAmerican
Alma mater University of Massachusetts Amherst
Iowa State University at Ames
Known for Mating disruption
Integrated pest management
SpouseKim Li Spencer
Scientific career
FieldsChemical ecology
Entomology
InstitutionsISCA Technologies, Inc.
University of California Riverside
Western Carolina University
Universidade de Alfenas
Universidade de São Paulo Ribeirao Preto
Doctoral advisor Ring T. Carde

Agenor Mafra-Neto (born May 31, 1964) is a chemical ecology researcher and entrepreneur in the entomological field of insect chemical ecology. He is the CEO of ISCA Technologies, [1] a company specializing in the development semiochemical solutions for pest management, robotic smart traps and nanosensors. Dr Mafra-Neto is the CEO and Director of Research and Development at ISCA Technologies, Inc. which he founded in 1996 in Riverside, California. ISCA Tecnologias, Ltda was founded in Brazil in 1997.

Contents

Education

Mafra-Neto came to the U.S. from Brazil in 1988 and received his PhD at the University of Massachusetts Amherst, under the guidance of Ring T. Carde. He completed a postdoctoral fellowship with Thomas C. Baker at Iowa State University at Ames, and has worked at the Universidade de Alfenas, Universidade de São Paulo Ribeirao Preto, Western Carolina University, and University of California, Riverside. Mafra-Neto is known for his work in the chemical orientation of insects, both basic and applied research. Dr. Mafra-Neto's expertise is in determining an insect's responsiveness to pheromone-containing lures (pheromone trap) and in disrupting their orientation to a pheromone source (mating disruption). Dr. Mafra-Neto has worked on the modification of insect behavior using semiochemicals both in the lab and in the field.

Research work

On a basic scientific level, his research has included the 1) the behavior of insects in the presence of complete and incomplete blends of pheromone at different doses, [2] 2) the effect of combining pheromones with insecticides, [3] [4] and 3) different forms of pheromone presentation and their effect on flying males. [5] [6]

Career in chemical ecology/entomology

In terms of applied science Mafra-Neto has developed and co-developed several semiochemical tools, devices and strategies [2] for pest management. One such strategy is an inexpensive attract-and-kill system developed for small cotton growers in Brazil. [7] Two examples of more technologically advanced strategies to release semiochemicals are the Metered Semiochemical Timed-Release System (MSTRS) and Specialized Pheromone & Lure Application Technology (SPLAT). The development of the MSTRS or Puffers, resulted in a novel, automated device that holds large quantities of pheromone under pressure, and actively releases exact doses of active ingredients at set intervals throughout a programmed period, [4] proven to control pests in very diverse environments including storage facilities, grasslands and corn fields (Baker et al. 1997 J. Agric.[7]), and cranberry bogs [8] [9] SPLAT is a proprietary base matrix formulation of biologically inert materials used to control the release of semiochemicals and/or odors with or without pesticides. Extensive research on SPLAT [10] [11] [12] [13] using a variety of lures demonstrates that this matrix emits semiochemicals at effective pest suppression levels for a time interval ranging from 2–30 weeks, controlling larvae and adult [14] insect pests.

Managing mosquitoes and the diseases they vector: Trojan Cows

Mafra-Neto has developed an artificial scent, called Abate, that has the key semiochemical elements to provide a signature of human host smell to mosquitoes and other blood feeding insects. [15] Spraying abate on an animal can trick anthropophilic disease-transmitting insects, such as malaria mosquitoes, into attacking animals rather than their preferred human hosts, thereby reducing infection rates. Malaria-causing parasites, carried by mosquitoes, identify the human hosts that help them reproduce by detecting the semiochemicals that now are contained in the Abate formulation. Cattle are resistant to malaria and many other human diseases transmitted by insects, and are often treated with deworming medication, which has a toxic effect on mosquitoes and their parasites. Abate opens up the possibility for novel ways to reduce the impact of insect vectored diseases, such as malaria. This is being tested with generous funds from the Bill and Melinda Gates Foundation. The use of Abate in tandem with area-wide deworming campaigns has the potential to disrupt the transmission cycle of insect vectored human diseases, like malaria, in the treated areas.

Managing mosquitoes and the diseases they vector: Nectar Based Attract and Kill

Mosquitoes, independent of their physiological state or gender, feed on sugar solutions virtually every day of their lives. Mafra-Neto's group has developed an artificial blend, called Vectrax, that attracts disease-carrying male and female disease-carrying mosquitoes by mimicking the scent of flowers and the sweet taste of nectar. [15] These components also induce mosquitoes to feed on the formulation, which, when applied in the field blended with a small amount of an effective insecticide results in an attract and kill (A&K) formulation. Vectrax has shown to effectively target mosquito vector species, like Aedes, Anopheles, and Culex species, while leaving non-target organisms unharmed. When sprayed on vegetation or structures outside residential areas and public spaces, Vectrax attracts and kills outdoor mosquitoes before they can bite a host, acting as an effective barrier to mosquitoes that might otherwise enter households in search of blood meals. As an inexpensive, efficacious, and easy-to-apply mosquito control formulation specifically designed for outdoor use, this product is addressing a critical weakness in current efforts to eradicate malaria[5][4], Zika, [16] Dengue, Filariasis and other vector-transmitted diseases, improving the health and quality of life of people living in endemic regions around the globe.

Smart traps and sensors

Dr. Mafra-Neto has developed IP that resulted in several patents, including on autonomous, area-wide monitoring and reporting systems, [17] on smart traps and pest identification sensors [18] [19] His research on sensors, [20] including nanosensors and sensor signals [21] [22] [23] [24] resulted in competitive awards from several agencies, including the National Science Foundation (NSF), Department of Defense (DoD), US Army, Air Force, NIST Advanced Technologies Program (ATP) from the Department of Commerce, United States Department of Agriculture (USDA) and the National Institute of Health (NIH) among others. Together with Dr. Eamonn Keogh, he received the first prize in the 2012 [25] Vodafone Americas Foundation's Wireless Innovation Project [26] and a Bill and Melinda Gates Foundation [27] Grand Challenges Explorations Grant. [28]

Related Research Articles

<span class="mw-page-title-main">Vector control</span> Methods to limit or eradicate the mammals, birds, insects etc. which transmit disease pathogens

Vector control is any method to limit or eradicate the mammals, birds, insects or other arthropods which transmit disease pathogens. The most frequent type of vector control is mosquito control using a variety of strategies. Several of the "neglected tropical diseases" are spread by such vectors.

A biopesticide is a biological substance or organism that damages, kills, or repels organisms seen as pests. Biological pest management intervention involves predatory, parasitic, or chemical relationships.

<span class="mw-page-title-main">Temefos</span> Chemical compound

Temefos or temephos is an organophosphate larvicide used to treat water infested with disease-carrying insects including mosquitoes, midges, and black fly larvae.

<span class="mw-page-title-main">Insect trap</span> Device used to monitor or reduce insect populations

Insect traps are used to monitor or directly reduce populations of insects or other arthropods, by trapping individuals and killing them. They typically use food, visual lures, chemical attractants and pheromones as bait and are installed so that they do not injure other animals or humans or result in residues in foods or feeds. Visual lures use light, bright colors and shapes to attract pests. Chemical attractants or pheromones may attract only a specific sex. Insect traps are sometimes used in pest management programs instead of pesticides but are more often used to look at seasonal and distributional patterns of pest occurrence. This information may then be used in other pest management approaches.

<span class="mw-page-title-main">Mosquito control</span> Efforts to reduce damage from mosquitoes

Mosquito control manages the population of mosquitoes to reduce their damage to human health, economies, and enjoyment. Mosquito control is a vital public-health practice throughout the world and especially in the tropics because mosquitoes spread many diseases, such as malaria and the Zika virus.

A semiochemical, from the Greek σημεῖον (semeion), meaning "signal", is a chemical substance or mixture released by an organism that affects the behaviors of other individuals. Semiochemical communication can be divided into two broad classes: communication between individuals of the same species (intraspecific) or communication between different species (interspecific).

Economic entomology is a field of entomology, which involves the study of insects that benefit or harm humans, domestic animals, and crops. Insects that pose disadvantages are considered pests. Some species can cause indirect damage by spreading diseases, and these are termed as disease vectors. Those that are beneficial include those that are reared for food such as honey, substances such as lac or pigments, and for their role in pollinating crops and controlling pests.

<span class="mw-page-title-main">Verbenone</span> Chemical compound

Verbenone is a natural organic compound classified as a terpene that is found naturally in a variety of plants. The chemical has a pleasant characteristic odor. Besides being a natural constituent of plants, it and its analogs are insect pheromones. In particular, verbenone when formulated in a long-lasting matrix has an important role in the control of bark beetles such as the mountain pine beetle and the Southern pine bark beetle.

<span class="mw-page-title-main">Medical entomology</span> Study of insect impacts on human health

The discipline of medical entomology, or public health entomology, and also veterinary entomology is focused upon insects and arthropods that impact human health. Veterinary entomology is included in this category, because many animal diseases can "jump species" and become a human health threat, for example, bovine encephalitis. Medical entomology also includes scientific research on the behavior, ecology, and epidemiology of arthropod disease vectors, and involves a tremendous outreach to the public, including local and state officials and other stake holders in the interest of public safety.

<span class="mw-page-title-main">Disease vector</span> Agent that carries and transmits an infectious pathogen into another living organism

In epidemiology, a disease vector is any living agent that carries and transmits an infectious pathogen such as a parasite or microbe, to another living organism. Agents regarded as vectors are mostly blood-sucking insects such as mosquitoes. The first major discovery of a disease vector came from Ronald Ross in 1897, who discovered the malaria pathogen when he dissected the stomach tissue of a mosquito.

Mating disruption (MD) is a pest management technique designed to control certain insect pests by introducing artificial stimuli that confuse the individuals and disrupt mate localization and/or courtship, thus preventing mating and blocking the reproductive cycle. It usually involves the use of synthetic sex pheromones, although other approaches, such as interfering with vibrational communication, are also being developed.

<span class="mw-page-title-main">Mosquito-borne disease</span> Diseases caused by bacteria, viruses or parasites transmitted by mosquitoes

Mosquito-borne diseases or mosquito-borne illnesses are diseases caused by bacteria, viruses or parasites transmitted by mosquitoes. Nearly 700 million people get a mosquito-borne illness each year resulting in over 725,000 deaths.

<i>Tuta absoluta</i> Pest worm of tomato, potato, and others

Tuta absoluta or Phthorimaea absoluta is a species of moth in family Gelechiidae known by the common names South American tomato pinworm, tomato leafminer, tomato pinworm and South American tomato moth. It is well known as a serious pest of tomato crops in Europe, Africa, western Asia and South and Central America, with larvae causing up to 100% loss if not effectively controlled.

<i>Phyllocnistis citrella</i> Species of moth

The citrus leafminer is a moth of the family Gracillariidae. It is also known as CLM in agriculture. It was described by Henry Tibbats Stainton from India in 1856. It was first found in Florida, United States, in 1993, but is now found all over the world, including Argentina, Australia, Brazil, China, Corsica, Costa Rica, Cuba, India, Israel, Madeira, Malaysia, Mauritius, Mexico, the Philippines, South Africa, Spain, Sri Lanka and other parts of the United States.

<span class="mw-page-title-main">Pheromone trap</span> Type of insect trap that uses pheromones to lure insects

A pheromone trap is a type of insect trap that uses pheromones to lure insects. Sex pheromones and aggregating pheromones are the most common types used. A pheromone-impregnated lure, as the red rubber septa in the picture, is encased in a conventional trap such as a bottle trap, Delta trap, water-pan trap, or funnel trap. Pheromone traps are used both to count insect populations by sampling, and to trap pests such as clothes moths to destroy them.

<span class="mw-page-title-main">Genetically modified insect</span> Insect that has been genetically modified

A genetically modified (GM) insect is an insect that has been genetically modified, either through mutagenesis, or more precise processes of transgenesis, or cisgenesis. Motivations for using GM insects include biological research purposes and genetic pest management. Genetic pest management capitalizes on recent advances in biotechnology and the growing repertoire of sequenced genomes in order to control pest populations, including insects. Insect genomes can be found in genetic databases such as NCBI, and databases more specific to insects such as FlyBase, VectorBase, and BeetleBase. There is an ongoing initiative started in 2011 to sequence the genomes of 5,000 insects and other arthropods called the i5k. Some Lepidoptera have been genetically modified in nature by the wasp bracovirus.

<span class="mw-page-title-main">John A. Pickett</span> British chemist (born 1945)

John Anthony Pickett CBE DSC FRS FLSW is a British chemist who is noted for his work on insect pheromones. Pickett is Professor of Biological Chemistry in the School of Chemistry at Cardiff University. He previously served as the Michael Elliott Distinguished Research Fellow at Rothamsted Research.

<span class="mw-page-title-main">Gypsy moths in the United States</span> Spread of an invasive species

The gypsy moth, also known as the spongy moth, was introduced in 1868 into the United States by Étienne Léopold Trouvelot, a French scientist living in Medford, Massachusetts. Because native silk-spinning caterpillars were susceptible to disease, Trouvelot imported the species in order to breed a more resistant hybrid species. Some of the moths escaped, found suitable habitat, and began breeding. The gypsy moth is now a major pest of hardwood trees in the Eastern United States.

<i>Ectomyelois ceratoniae</i> Species of moth

Ectomyelois ceratoniae, the locust bean moth, more ambiguously known as "carob moth", is a moth of the family Pyralidae. It has a nearly cosmopolitan distribution.

Ernestine Hogan Basham Thurman (1920–1987) was an American entomologist and researcher, focusing on mosquitoes and vector control. In 1951 she was the first woman sent by the United States to Thailand to establish a malaria control program.

References

  1. Iscatech.com Archived February 24, 2011, at the Wayback Machine . Iscatech.com. Retrieved on January 24, 2012.
  2. 1 2 Mafra-Neto, A & R.T. Cardé. 1998. Rate of realized interception of pheromone pulses in different wind speeds modulates almond moth orientation. J. Comp. Physiol. A 182: 563–572.
  3. Mafra-Neto, A. & R.T. Cardé. 1996. Dissection of the pheromone-modulated flight of moths using the single-pulse response as a template. Experientia 52:373–379.
  4. 1 2 Mafra-Neto, A., Baker, T.C., 1996a. Timed, metered sprays of pheromone disrupt mating of Cadra cautella (Lepidoptera: Pyralidae). J. Agric. Entomol. 13, 149–168.
  5. Mafra-Neto, A., Carde´, R.T., 1994. Fine-scale structure of pheromone plumes modulates upwind orientation of flying moths. Nature 369, 142–144
  6. Mafra-Neto, A., Baker, T.C., 1996b. Elevation of pheromone response threshold in almond moth males pre-exposed to pheromone spray. Physiol. Entomol. 21, 217–222
  7. Mafra-Neto, A. & M. Habib. 1996. Evidence that mass trapping suppresses pink bollworm in cotton fields. Entomol. Exp. Appl. 81: 315–323.
  8. Baker, Thomas C.; Dittl, T.; Mafra-Neto, Agenor. 1997. Disruption of sex communication in the blackheaded fireworm in Wisconsin cranberry marshes by using MSTRS devices. J. Agric. Entomol. 14: 449–457.
  9. Baker, Thomas C.; Mafra-Neto, Agenor; Dittl, T. 1997. First attempts at disrupting sex pheromone communication in the blackheaded fireworm in Wisconsin using a novel controlled-release device. Cranberry: Resources: Wisconsin Cranberry School Proceedings. Retrieved September 10, 2010 from library.wisc.edu Archived July 20, 2011, at the Wayback Machine
  10. Vargas, Roger I.; Stark, John. D.; Hertlein, Mark; Mafra-Neto, Agenor; Coler, Reginald; Pinero, Jaime. 2008. Evaluation of SPLAT with Spinosad and Methyl Eugenol or Cue-Lure for “Attract-and-Kill” of Oriental Fruit Fly and Melon Fruit Flies (Diptera: Tephritidae) in Hawaii. J. Econ. Entomol. 101: 759–768.
  11. Lapointe, Stephen L.; Stelinski, Lukasz L.; Evens, Terence J.; Niedz, Randall P.; Hall, David G.; Mafra-Neto, Agenor. 2009. Sensory Imbalance as Mechanism of Orientation Disruption in the Leafminer Phyllocnistis citrella: Elucidation by Multivariate Geometric Designs and Response Surface Models. J Chem Ecol. 35: 896–903
  12. Vargas, Roger I.; Pinero, Jaime C.; Mau, Ronald F. L.; Stark, John D.; Hertlein, Mark; Mafra-Neto, Agenor; Coler, Reginald; Getchell, Anna. 2009. Attraction and mortality of oriental fruit flies to SPLAT-MAT-methyl eugenol with spinosad. Entomol. Exp. Appl. 131: 286–293.
  13. Vargas, Roger I.; Pinero, Jaime C.; Jang, Eric B.; Mau, Ronald F. L.; Stark, John D.; Gomez, Luis; Stoltman, Lyndsie; Mafra-Neto, Agenor. 2010. Response of Melon Fly (Diptera: Tephritidae) to Weathered SPLAT-Spinosad-Cue-Lure. J. Econ. Entomol. 103 (5): In Press.
  14. Mafra-Neto, A. 2008. Dual action organic formulation to control two stages of insect pests. US Pat. US Patent No. 7,887,828.
  15. 1 2 Mafra-Neto, A, Saroli, J, da Silva, RO, Mboera, LE, White, GB, Foster, W, Spencer, KL, Ebrahimi, B, Sonenshine, DE, Daniels, T, Kemibala, EE, Borges, R. and Dekker, T. 2018. Getting Them Where They Live—Semiochemical-Based Strategies To Address Major Gaps in Vector Control Programs: Vectrax, SPLAT BAC, Trojan Cow, and SPLAT TK. In Advances in the Biorational Control of Medical and Veterinary Pests. EJ Norris1, JR Coats2, AD Gross, and JM Clark [Eds.] American Chemical Society. Chapter 7, pp 101-152. Chapter DOI: DOI:10.1021/bk-2018-1289.ch007; ACS Symposium Series, Vol. 1172; ISBN   9780841233591
  16. Tavernise, Sabrina; McNeil, Donald G. Jr (February 2016). "Zika Virus a Global Health Emergency, W.H.O. Says". The New York Times.
  17. Mafra-Neto, A. 2002. Method for pest management and crop certification utilizing network accessible database. US Patent 5,728,376.
  18. Mafra-Neto, A., Coler, R. 2004. Method for pest management using pest identification sensors and network accessible database. US Patent 6,766,251.
  19. Mafra-Neto, A.; Keogh E; 2017. Systems and methods for classifying flying insects. US Patent Application. A1 20170055511.
  20. Batista, G.; Keogh, E.; Hao, Y. and Mafra-Neto, A. 2011.Towards Automatic Classification of Flying Insects using Inexpensive Sensors. AAAI-11 PGAI. In press.
  21. Wei, L.; Keogh, E. J.; Van Herle, H.; Mafra-Neto, A. 2005. Atomic Wedgie: Efficient Query Filtering for Streaming Time Series. International Conference on Data Mining 2005: 490–497.
  22. Xi, X.; Keogh, E.J.; Wei, Li; Mafra-Neto, A. 2007. Finding Motifs in Database of Shapes. In: Proceedings of the Seventh SIAM International Conference on Data Mining. April 26–28, 2007. Minneapolis, MN SDM2007.
  23. Ye, L.; Wang, X.; Keogh, E.J.; Mafra-Neto, A. 2009. Autocannibalistic and Anyspace Indexing Algorithms with Application to Sensor Data Mining. In: Proceedings of the SIAM International Conference on Data Mining. April 30 – May 2, 2009. Sparks, NV SDM2009: 85–96.
  24. Wei, L.; Keogh, E.J.; Van Herle, H.; Mafra-Neto, A.; Abbott, R. J. 2007. Efficient query filtering for streaming time series with applications to semi-supervised learning of time series classifiers. Knowl. Inf. Syst. 11 (3): 313–344.
  25. 2012 Vodafone Americas Foundation's Wireless Innovation Project Winners
  26. Wireless Bug-Sensor
  27. Archived January 27, 2013, at the Wayback Machine Bill and Melinda Gates Foundation Grand Challenges Program
  28. [ permanent dead link ] Bill and Melinda Gates Foundation Grand Challenges Explorations Program: Round 9 Highlights