Phyllocnistis citrella

Last updated

Phyllocnistis citrella
Phyllocnistis citrella adult.jpg
Phyllocnistis citrella adult1.jpg
Scientific classification
Kingdom:
Phylum:
Class:
Order:
Infraorder:
Family:
Genus:
Species:
P. citrella
Binomial name
Phyllocnistis citrella
Stainton, 1856

The citrus leafminer (Phyllocnistis citrella) is a moth of the family Gracillariidae. It is also known as CLM in agriculture. It was described by Henry Tibbats Stainton from India in 1856. [1] [2] It was first found in Florida, United States, in 1993, [3] but is now found all over the world, including Argentina, Australia, Brazil, China, Corsica, Costa Rica, Cuba, India, Israel, Madeira, Malaysia, Mauritius, Mexico, the  Philippines, South Africa, Spain, Sri Lanka and other parts of the United States.

Contents

The wingspan is about 5 millimetres (0.20 in)</ref>.

The larvae are considered a serious agricultural pest on Citrus species, such as Aegle marmelos , Atalantia , Citrofortunella microcarpa , Citrus limon , Citrus paradisi , Citrus maxima , Fortunella margarita , Murraya paniculata and Poncirus trifoliate . Larvae have also been recorded on Garcinia mangostana , Pongamia pinnata , Alseodaphne semecarpifolia , Loranthus and Jasminum sambac . They mine the leaves of their host plant. The mine consists of a long epidermal corridor with a well-marked central frass line. The mine is mostly lower-surface, but sometimes upper-surface, and rarely on the rind of the developing fruit. Citrus leaf miner larvae are thus protected from many topic insecticide treatments. Pupation takes place in a chamber at the end of the corridor, under an overturned part of the leaf margin.

Citrus leafminer distribution

Citrus leafminer (CLM) are native to Asia and are found throughout the continent and beyond. Japan, the Philippines, New Guinea, India and Taiwan are some of the countries in which the pest is distributed. The pest is not exclusively found in these countries having spread to nearly every citrus growing area in the world. Recent spread into North and South America was reported in the early 1990s. This is especially important because major citrus growing operations are found in Brazil and the US. These two countries account for half of the world's citrus production.[ citation needed ]

CLM management

Insecticides

Insecticide applications are among the most effective methods available for managing CLM. Yet because of the CLM's ability to "mine" leaves insecticides are not entirely effective when dealing with CLM infestations. Cultural control, such as basic citrus tree upkeep and management, are essential to keeping mature citrus trees healthy and capable at combating CLM infestations. [4] While a number of insecticides are used to manage CLM, concerns linger over the type and amount to apply to CLM orchards and nurseries. Some concerns include: wide-spectrum insecticides targeting more than just CLM, killing more than a single insect species this can have adverse effects on beneficial insects that prey on CLM and even beneficial pollinators like bees; insecticide resistance has been reported in certain citrus growing areas; use near residential areas. Insecticides used to manage this pest include but not limited to the following:

Active IngredientTrade Names
Abamectin Agri-Mek 0.15 EC
Acetamiprid Assail 70 WP
Diflubenzuron Micromite 80WGS
Thiamethoxam Platinum 75 SG
Spinosad SpinTor 2SC
Spinetoram Delegate WG
Methoxyfenozide Intrepid 2F
Imidacloprid Admire Pro, 2F

Monitoring and mass trapping

Traps specifically designed to lure CLM are also deployed as a mechanism to both monitor and reduce CLM population, although during high infestation situations, traps alone are not recommended without additional measures. They are, however, a good indicator of CLM population levels, which can help in developing effective management plans.

Adult citrus leafminers' mating communication is mediated by sex pheromones emitted by the adult females. A new lure that is environmentally friendly, species-specific, and emits the naturally occurring citrus leafminer pheromone has been developed targeting the management of this pest. [5] The lure attracts adult male citrus leafminers to an insect pheromone trap over a period of 4 to 8 weeks, allowing users to monitor for its presence, determine the relative population density in the field, or use it to actually control populations by mass trapping the males.

Mating disruption

The CLM sex pheromone can also be used in the field without a trap, as a mating disruption to control and manage the pest. The mating disruption strategy is an environmentally friendly tactic that causes males to fail to find mates, reducing encounters between male and female CLM, leading to less fertilized eggs. The formulation SPLAT CLM, [6] which combines nature-identical pheromone with SPLAT, has been registered with the US EPA to control the citrus leafminer. Unlike wide spectrum insecticides, which may impact beneficial insects (such as bees) or may cause insecticide resistance build-up, these pheromone based strategies rarely cause the development of resistance and reduce the use of conventional pesticides, thus avoiding pollution.

In the case of the citrus leafminer, the female moth produces at least two volatile compounds, a diene (two double bonds: Z,Z)-7,11-hexadecadienal) and a triene (three double bonds: (Z,Z,E)-7,11,13-hexadecatrienal) in a 3:1 triene:diene ratio [7] that are both necessary and sufficient to attract males. [8] It was determined that a 3:1 triene:diene blend of the synthetic pheromone was optimal for attracting males to an adhesive trap in the field in Florida. This is the same 3:1 blend that was first isolated from the female pheromone glands. However, the question of what blend (the "natural" 3:1 blend or some other "unnatural" ratio) was best for mating disruption in general was addressed for this species using geometric multivariate experiment designs combined with response surface modeling. The triene component alone achieved maximum disruption of attraction of males. [9]

Attracticides

Advances in attractant formulations includes addition of an insecticide ingredient along with pheromone ingredients in order to attract CLM and kill the pest when it contacts the point source. [10]

Related Research Articles

<i>Helicoverpa zea</i> Species of moth

Helicoverpa zea, commonly known as the corn earworm, is a species in the family Noctuidae. The larva of the moth Helicoverpa zea is a major agricultural pest. Since it is polyphagous during the larval stage, the species has been given many different common names, including the cotton bollworm and the tomato fruitworm. It also consumes a wide variety of other crops.

<span class="mw-page-title-main">Pest control</span> Control of harmful species

Pest control is the regulation or management of a species defined as a pest; such as any animal, plant or fungus that impacts adversely on human activities or environment. The human response depends on the importance of the damage done and will range from tolerance, through deterrence and management, to attempts to completely eradicate the pest. Pest control measures may be performed as part of an integrated pest management strategy.

<span class="mw-page-title-main">Indianmeal moth</span> Species of moth

The Indianmeal moth, also spelled Indian meal moth and Indian-meal moth, is a pyraloid moth of the family Pyralidae. Alternative common names are weevil moth, pantry moth, flour moth or grain moth. The almond moth and the raisin moth are commonly confused with the Indian-meal moth due to similar food sources and appearance. The species was named for feeding on Indian meal or cornmeal, and does not occur natively in India. It is also not to be confused with the Mediterranean flour moth, another common pest of stored grains.

<span class="mw-page-title-main">Cabbage looper</span> Species of moth

The cabbage looper is a medium-sized moth in the family Noctuidae, a family commonly referred to as owlet moths. Its common name comes from its preferred host plants and distinctive crawling behavior. Cruciferous vegetables, such as cabbage, bok choy, and broccoli, are its main host plant; hence, the reference to cabbage in its common name. The larva is called a looper because it arches its back into a loop when it crawls.

<span class="mw-page-title-main">Light brown apple moth</span> Species of moth (Epiphyas postvittana)

The light brown apple moth is a leafroller moth belonging to the lepidopteran family Tortricidae.

<span class="mw-page-title-main">Leaf miner</span> Larva of an insect that lives in and eats the leaf tissue of plants

A leaf miner is any one of numerous species of insects in which the larval stage lives in, and eats, the leaf tissue of plants. The vast majority of leaf-mining insects are moths (Lepidoptera), sawflies, and flies (Diptera). Some beetles also exhibit this behavior.

<i>Aonidiella aurantii</i> Species of true bug

Aonidiella aurantii or red scale is an armored scale insect and a major pest of citrus. It is thought to be a native of South China but has been widely dispersed by the agency of man through the movement of infected plant material. In the United States it is known as California red scale. It was first found in California between 1868 and 1875, apparently brought there on planting material imported from Australia.

<span class="mw-page-title-main">Diamondback moth</span> Species of moth

The diamondback moth, sometimes called the cabbage moth, is a moth species of the family Plutellidae and genus Plutella. The small, grayish-brown moth sometimes has a cream-colored band that forms a diamond along its back. The species may have originated in Europe, South Africa, or the Mediterranean region, but it has now spread worldwide.

<span class="mw-page-title-main">European corn borer</span> Species of moth

The European corn borer, also known as the European corn worm or European high-flyer, is a moth of the family Crambidae. It is a pest of grain, particularly maize. The insect is native to Europe, originally infesting varieties of millet, including broom corn. The European corn borer was first reported in North America in 1917 in Massachusetts, but was probably introduced from Europe several years earlier. Since its initial discovery in the Americas, the insect has spread into Canada and westwards across the United States to the Rocky Mountains.

Mating disruption (MD) is a pest management technique designed to control certain insect pests by introducing artificial stimuli that confuse the individuals and disrupt mate localization and/or courtship, thus preventing mating and blocking the reproductive cycle. It usually involves the use of synthetic sex pheromones, although other approaches, such as interfering with vibrational communication, are also being developed.

<i>Acrobasis vaccinii</i> Species of moth

Acrobasis vaccinii, the cranberry fruitworm, is a moth of the family Pyralidae described by Charles Valentine Riley in 1884. It is found in North America from Nova Scotia to Florida and from Wisconsin to Texas, it is introduced in the state of Washington.

<span class="mw-page-title-main">Pheromone trap</span> Type of insect trap that uses pheromones to lure insects

A pheromone trap is a type of insect trap that uses pheromones to lure insects. Sex pheromones and aggregating pheromones are the most common types used. A pheromone-impregnated lure, as the red rubber septa in the picture, is encased in a conventional trap such as a bottle trap, Delta trap, water-pan trap, or funnel trap. Pheromone traps are used both to count insect populations by sampling, and to trap pests such as clothes moths to destroy them.

<span class="mw-page-title-main">Gypsy moths in the United States</span> Spread of an invasive species

The gypsy moth, also known as the spongy moth, was introduced in 1868 into the United States by Étienne Léopold Trouvelot, a French scientist living in Medford, Massachusetts. Because native silk-spinning caterpillars were susceptible to disease, Trouvelot imported the species in order to breed a more resistant hybrid species. Some of the moths escaped, found suitable habitat, and began breeding. The gypsy moth is now a major pest of hardwood trees in the Eastern United States.

<i>Ectomyelois ceratoniae</i> Species of moth

Ectomyelois ceratoniae, the locust bean moth, more ambiguously known as "carob moth", is a moth of the family Pyralidae. It has a nearly cosmopolitan distribution.

<i>Cadra figulilella</i> Species of moth

Cadra figulilella, the raisin moth, is a moth of the family Pyralidae. The raisin moth is known most commonly as a pest that feeds on dried fruits, such as the raisin and date. It covers a range that includes much of the world, primarily situating itself in areas of California, Florida, the Eastern Mediterranean region, and some parts of Africa, Australia, and South America. The moth prefers to live in a hot, arid climate with little moisture and plentiful harvest for its larvae to feed on. Study of this species is important due to the vast amount of economic damage it causes yearly and worldwide to agriculture crops.

<span class="mw-page-title-main">Agenor Mafra-Neto</span> American chemical ecology researcher (born 1964)

Agenor Mafra-Neto is a chemical ecology researcher and entrepreneur in the entomological field of insect chemical ecology. He is the CEO of ISCA Technologies, a company specializing in the development semiochemical solutions for pest management, robotic smart traps and nanosensors. Dr Mafra-Neto is the CEO and Director of Research and Development at ISCA Technologies, Inc. which he founded in 1996 in Riverside, California. ISCA Tecnologias, Ltda was founded in Brazil in 1997.

<span class="mw-page-title-main">Moth trap</span> Trap used to catch insects

Moth traps are devices used for capturing moths for scientific research or domestic pest control.

<i>Planococcus citri</i> Species of true bug

Planococcus citri, commonly known as the citrus mealybug, is a species of mealybugs native to Asia. It has been introduced to the rest of the world, including Europe, the Americas, and Oceania, as an agricultural pest. It is associated with citrus, but it attacks a wide range of crop plants, ornamental plants, and wild flora.

Liriomyza trifolii, known generally as the American serpentine leafminer or celery leafminer, is a species of leaf miner fly in the family Agromyzidae.

References

  1. Phyllocnistis citrella
  2. "Citrus leafminer - Phyllocnistis citrella Stainton". entnemdept.ufl.edu. Retrieved 15 December 2019.
  3. "Citrus Leafminer, Phyllocnistis citrella". Center For Invasive Species Research. Retrieved 15 December 2019.
  4. Stansly, A; Qureshi, J A; Stelinski, L L; Rogers, M E. "2018-2019 Florida Citrus Production Guide: Asian Citrus Psyllid and Citrus Leafminers" (PDF). Institute of Food and Agricultural Sciences. Retrieved 15 December 2019.
  5. "Next Generation Insect Controls". ISCA. Retrieved 15 December 2019.
  6. "Citrus Leafminer". ISCA. Retrieved 15 December 2019.
  7. Moreira, J.A., S. McElfresh, S., and J.G. Millar. 2006. Identification, synthesis, and field testing of the sex pheromone of the citrus leafminer, Phyllocnistis citrella. Journal of Chemical Ecology 32:169-194
  8. Lapointe, S.L., D.G. Hall, Y. Murata, A.L. Parra-Pedrazzoli, J.M.S. Bento, E. Vilela and W. S. Leal. 2006. Field evaluation of a synthetic female sex pheromone for the leafmining moth Phyllocnistis citrella (Lepidoptera: Gracillariidae) in Florida citrus. Florida Entomologist 89:274-276
  9. Lapointe, S., L. Stelinksi, T. Evens, R. Niedz, D. Hall and A. Mafra-Neto. 2009. Sensory imbalance as mating disruption mechanism in a moth: elucidation by multivariate geometric designs and response surface models. Journal of Chemical Ecology 35: 896-903
  10. "Advances in SPLAT CLM, MalEx rein in citrus pest - the Grower". Archived from the original on 2012-03-31. Retrieved 2012-03-16.