Alice Springs Orogeny

Last updated

The Alice Springs Orogeny was a major intraplate tectonic (mountain building) episode in central Australia responsible for the formation of a series of large mountain ranges. [1] The deformation associated with the Alice Spring Orogeny caused the vertically-tilted sandstone layers of the iconic Uluru/Ayers Rock.

Contents

Duration

The Alice Springs Orogeny was a long lived event, beginning approximately 450 million years ago and concluding about 300 million years ago, [2] [3] and it involved less than 100 km of distributed shortening. [2]

Extent

The Alice Springs orogeny was centred in an area that had previously been a marine sedimentary basin, and involved the thrusting up of the underlying metamorphic and igneous rocks of Proterozoic age.

The Alice Springs Orogeny had its beginnings in the Late Ordovician, continuing during the Silurian and Devonian, and by the Carboniferous the folding of the sedimentary deposits of the central Australian basins had produced the mountainous terrain of the MacDonnell Ranges area. [3] Today we see only the eroded remnants of these former mountains in the MacDonnell Ranges and other ranges throughout much of central Australia.

Prior to the Alice Springs Orogeny the Amadeus, Georgina, Wiso and Ngalia sedimentary basins were adjoining. The Alice Springs Orogeny disentombed the Arunta Inlier during mainly south-directed thrusting. [4] Sediment was eroded off the rising mountain belt to result in the deposition of thick foreland sediments which became incorporated into the remaining relics of the former sedimentary basin, becoming the Amadeus, Georgina and Ngalia basins that are preserved today. [2]

General tectonics

Two major crustal blocks dominate Central Australia: the Palaeoproterozoic to Mesoproterozoic Arunta Block and the Mesoproterozoic Musgrave Block. The blocks now separate the Officer, Amadeus, Ngalia and Georgina Basins. [5]

Central Australia has experienced two intraplate orogenic events involving significant north-south shortening: the late Neoproterozoic to early Cambrian Petermann Orogeny and the Devonian to Carboniferous Alice Springs Orogeny. The pattern of fault reactivation during these events is similar to the pattern of subsidence in the overlying basin. During the Alice Springs Orogeny, reactivation occurred along the most deeply buried faults, even in instances where those faults had remained inactive during the earlier Petermann Orogeny. The major Petermann-aged structures that were not buried during renewed subsidence were inactive during the Alice Springs Orogeny. The record of reactivation tells us that the presence of pre-existing faults is insufficient to localise deformation. The correspondence between the distribution of basement fault reactivation and subsidence patterns during the Petermann and Alice Springs Orogenies implies a link between relatively thick sedimentation and long-term lithospheric weakening. This link is also found to be compatible with the thermal effects of a thick sedimentary blanket. [5]

Since both events involved significant north-south shortening, deformation is said to have occurred in response to a similarly oriented in-plane regional stress field. [5] The combined effects of both the orogenic events resulted in the emergence of the Musgrave and Arunta Blocks from beneath the Centralian intracratonic basin, which is now represented by the Officer, Amadeus, Ngalia and Georgina Basins.

Localisation of strain

Deformation was not spatially continuous throughout the Alice Springs Orogeny, but focused at a number of discrete loci, situated along the current structural margins of the preserved basins and in areas of now-exhumed basement. [3]

The factors that control distribution of intraplate deformation have been the subject of considerable discussion. Many people believe that the intraplate deformation of the Alice Springs Orogeny is localised by suitably oriented structural weaknesses such as faults. This theory is supported by the observation that many continental interior faults have experienced numerous episodes of reactivation during their history. [6] Although shortening associated with the Alice Springs Orogeny was widespread, there are two major regions affected by significant basement involved deformation: the Redbank Shear Zone and the Officer Basin.

Redbank Shear Zone

The Redbank Shear Zone in the Arunta Block, is a reverse sense shear zone dipping north at about 45 degrees, and was the major structural feature reactivated during the Alice Springs Orogeny. This shear zone is associated with one of the largest gravity anomalies known from continental interiors. The Redbank Shear Zone also accommodates 25% of the apparent shortening. [5]

Seismic and gravity data over the Arunta Inlier have provided a reasonable degree of constraint on the crustal architecture of this province and have demonstrated that the crust-mantle boundary is uplifted by 25 km along the lithospheric-scale Redbank Thrust Zone, and that this offset is sufficient to cause the relative gravity high. [5]

The south-directed Redbank Shear Zone accommodated much of the exhumation and led to the unearthing of the Moho. The spectacular Macdonnell Ranges near Alice Springs are made up of Amadeus Basin sediments tilted as a consequence of exhumation associated with the Redbank Shear Zone. [5]

Officer Basin

The second region occurs along the northern margin of the Officer Basin. In this basin the Alice Springs Orogeny caused reactivation of the Munyarai Thrust which had also undergone reactivation during the Petermann Orogeny. Shortening here resulted in southward thrusting of basement rocks belonging to the Musgrave Block across the northern margin of the basin. [5]

Related Research Articles

<span class="mw-page-title-main">Acadian orogeny</span> North American orogeny

The Acadian orogeny is a long-lasting mountain building event which began in the Middle Devonian, reaching a climax in the early Late Devonian. It was active for approximately 50 million years, beginning roughly around 375 million years ago, with deformational, plutonic, and metamorphic events extending into the Early Mississippian. The Acadian orogeny is the third of the four orogenies that formed the Appalachian orogen and subsequent basin. The preceding orogenies consisted of the Potomac and Taconic orogeny, which followed a rift/drift stage in the Late Neoproterozoic. The Acadian orogeny involved the collision of a series of Avalonian continental fragments with the Laurasian continent. Geographically, the Acadian orogeny extended from the Canadian Maritime provinces migrating in a southwesterly direction toward Alabama. However, the Northern Appalachian region, from New England northeastward into Gaspé region of Canada, was the most greatly affected region by the collision.

<span class="mw-page-title-main">Sevier orogeny</span> Mountain-building episode in North America

The Sevier orogeny was a mountain-building event that affected western North America from northern Canada to the north to Mexico to the south.

<span class="mw-page-title-main">Yilgarn Craton</span> Large craton in Western Australia

The Yilgarn Craton is a large craton that constitutes the bulk of the Western Australian land mass. It is bounded by a mixture of sedimentary basins and Proterozoic fold and thrust belts. Zircon grains in the Jack Hills, Narryer Terrane have been dated at ~4.27 Ga, with one detrital zircon dated as old as 4.4 Ga.

<span class="mw-page-title-main">Geology of Australia</span> Overview of the geology of Australia

The geology of Australia includes virtually all known rock types, spanning a geological time period of over 3.8 billion years, including some of the oldest rocks on earth. Australia is a continent situated on the Indo-Australian Plate.

The Hunter-Bowen Orogeny was a significant arc accretion event in the Permian and Triassic periods affecting approximately 2,500 km of the Australian continental margin.

<span class="mw-page-title-main">Petermann Orogeny</span>

The Petermann Orogeny was an Australian intracontinental event that affected basement rocks of the northern Musgrave Province and Ediacaran (Proterozoic) sediments of the (now) southern Amadeus Basin between ~550-535 Ma. The remains are seen today in the Petermann Ranges.

<span class="mw-page-title-main">Gascoyne Complex</span> Granite and metamorphic rock in Western Australia

The Gascoyne Complex is a terrane of Proterozoic granite and metamorphic rock in the central-western part of Western Australia. The complex outcrops at the exposed western end of the Capricorn Orogen, a 1,000 km-long arcuate belt of folded, faulted and metamorphosed rocks between two Archean cratons; the Pilbara craton to the north and the Yilgarn craton to the south. The Gascoyne Complex is thought to record the collision of these two different Archean continental fragments during the Capricorn Orogeny at 1830–1780 Ma.

The Centralian Superbasin is a large intracratonic sedimentary basin which occupied a large area of central, southern and western Australia during much of the Neoproterozoic Era.

<span class="mw-page-title-main">Amadeus Basin</span> Intracratonic sedimentary province in Australia

The Amadeus Basin is a large (~170,000 km2) intracratonic sedimentary basin in central Australia, lying mostly within the southern Northern Territory, but extending into the state of Western Australia.

The Georgina Basin is a large intracratonic sedimentary basin in central and northern Australia, lying mostly within the Northern Territory and partly within Queensland. It is named after the Georgina River which drains part of the basin. Deposition of locally up to c. 4 km of marine and non-marine sedimentary rocks took place from the Neoproterozoic to the late Paleozoic. Along with other nearby sedimentary basins of similar age, the Georgina Basin is believed to have once been part of the hypothetical Centralian Superbasin, that was fragmented during episodes of tectonic activity.

The Ngalia Basin is a small intracratonic sedimentary basin in central Australia, lying within the southern Northern Territory. Deposition of locally up to about six km of marine and non-marine sedimentary rocks took place from the Neoproterozoic to the late Paleozoic. Along with other nearby sedimentary basins of similar age, the Ngalia Basin is believed to have once been part of the hypothetical Centralian Superbasin, that was fragmented during episodes of tectonic activity.

<span class="mw-page-title-main">Inversion (geology)</span> Relative uplift of a sedimentary basin or similar structure as a result of crustal shortening

In structural geology inversion or basin inversion relates to the relative uplift of a sedimentary basin or similar structure as a result of crustal shortening. This normally excludes uplift developed in the footwalls of later extensional faults, or uplift caused by mantle plumes. "Inversion" can also refer to individual faults, where an extensional fault is reactivated in the opposite direction to its original movement.

The geological structure of Great Britain is complex, resulting as it does from a long and varied geological history spanning more than two billion years. This piece of the Earth's crust has experienced several episodes of mountain building or 'orogenies', each of which has added further complexity to the picture.

<span class="mw-page-title-main">Geology of the Pyrenees</span> European regional geology

The Pyrenees are a 430-kilometre-long, roughly east–west striking, intracontinental mountain chain that divide France, Spain, and Andorra. The belt has an extended, polycyclic geological evolution dating back to the Precambrian. The chain's present configuration is due to the collision between the microcontinent Iberia and the southwestern promontory of the European Plate. The two continents were approaching each other since the onset of the Upper Cretaceous (Albian/Cenomanian) about 100 million years ago and were consequently colliding during the Paleogene (Eocene/Oligocene) 55 to 25 million years ago. After its uplift, the chain experienced intense erosion and isostatic readjustments. A cross-section through the chain shows an asymmetric flower-like structure with steeper dips on the French side. The Pyrenees are not solely the result of compressional forces, but also show an important sinistral shearing.

<span class="mw-page-title-main">Andean orogeny</span> Ongoing mountain-forming process in South America

The Andean orogeny is an ongoing process of orogeny that began in the Early Jurassic and is responsible for the rise of the Andes mountains. The orogeny is driven by a reactivation of a long-lived subduction system along the western margin of South America. On a continental scale the Cretaceous and Oligocene were periods of re-arrangements in the orogeny. The details of the orogeny vary depending on the segment and the geological period considered.

<span class="mw-page-title-main">Bangong suture</span>

The Bangong suture zone is a key location in the central Tibet conjugate fault zone. Approximately 1,200 km long, the suture trends in an east–west orientation. Located in central Tibet between the Lhasa and Qiangtang terranes, it is a discontinuous belt of ophiolites and mélange that is 10–20 km wide, up to 50 km wide in places. The northern part of the fault zone consists of northeast striking sinistral strike-slip faults while the southern part consists of northwest striking right lateral strike-slip faults. These conjugate faults to the north and south of the Bangong intersect with each other along the Bangong-Nujiang suture zone.

<span class="mw-page-title-main">Intraplate deformation</span>

Intraplate deformation is the folding, breaking, or flow of the Earth's crust within plates instead of at their margins. This process usually occurs in areas with especially weak crust and upper mantle, such as the Tibetan Plateau. Intraplate deformation brings another aspect to plate tectonic theory.

<span class="mw-page-title-main">Nordfjord-Sogn Detachment</span> Zone of deformed rocks in Norway

The Nordfjord—Sogn Detachment (NSD) is a major extensional shear zone in Norway up to 6 km in thickness, which extends about 120 km along strike from Nordfjord to Sognefjord, bringing Devonian continental coarse clastic sedimentary rocks into close contact with eclogite facies metamorphic rocks of the Western Gneiss Region. It formed towards the end of the Caledonian Orogeny and was mainly active during the Devonian. It has an estimated displacement of at least 70 km and possibly as much as 110 km. It was reactivated during the Mesozoic and may have influenced the development of fault structures in the North Sea rift basin.

<span class="mw-page-title-main">Kvamshesten Basin</span>

The Kvamshesten Basin is a sedimentary basin containing coarse continental clastic rocks of Devonian age. It is one of a series of basins of similar age in southwestern Norway found between Sognefjord and Nordfjord, developed in the hanging-wall of the Nordfjord-Sogn Detachment. It is named for the mountain of Kvamshesten.

<span class="mw-page-title-main">Ordos Block</span>

The Ordos Block is a crustal block, that forms part of the larger North China Block (NCB). It is surrounded by active fault systems and has been a distinct block since at least the Mesozoic. It is bordered to the west by the Alxa Block, the westernmost part of the NCB, to the south by the Qinling orogenic belt, to the north by the Yanshan-Yinshan orogenic belt, part of the Central Asian Orogenic Belt and to the east by the Taihangshan mountain range, which forms part of the Trans-North China Orogen. The block is currently stable and large earthquakes are restricted to the bordering fault zones. It has been suggested that the block is currently undergoing anti-clockwise rotation with respect to the Eurasian Plate, as a result of the ongoing eastward spreading of the Tibetan Plateau, although this view has been challenged.

References

  1. Wells AT, Forman DJ, Ranford LC, Cook PJ (1970). "Geology of the Amadeus Basin, Central Australia". Bureau of Mineral Resources, Australia, Bulletin 100.
  2. 1 2 3 Bradshaw JD, Evans PR (1988). "Palaeozoic tectonics, Amadeus Basin, central Australia". The APEA Journal 28: 267–282
  3. 1 2 3 Haines PW, Hand M, Sandiford M (2001). "Palaeozoic synorogenic sedimentation in central and northern Australia: a review of distribution and timing with implications for the evolution of intracontinental orogens". Australian Journal of Earth Sciences. 48 (6): 911–928. doi:10.1046/j.1440-0952.2001.00909.x.
  4. Flöttmann, T., Hand, M. Close, D. Edgoose, C. & Scrimgeour, I. 2004. Thrust tectonic styles of the intracratonic Petermann and Alice Springs Orogenies, Central Australia. In: McClay, K (ed.) Thrust Tectonics and Hydrocarbon Systems, Memoir No 82, American Association of Petroleum Geologists
  5. 1 2 3 4 5 6 7 Hand, M., and M. Sandiford (1999), Intraplate deformation in central Australia, the link between subsidence and fault reactivation, Tectonophysics, 305, 121-140
  6. Sandiford, M., M. Hand, and S. McLaren (2001), Tectonic feedback, intraplate orogeny and the geochemical structure of the crust: A central Australian perspective, Geological Society Special Publication, 184, 195-218