Alkannin

Last updated
Alkannin
Alkannin.svg
Alkannin 3D spacefill.png
Names
Preferred IUPAC name
5,8-Dihydroxy-2-[(1S)-1-hydroxy-4-methylpent-3-en-1-yl]naphthalene-1,4-dione
Other names
  • C.I. Natural red 20
  • Alkanet extract
  • Anchusaic acid
  • Anchusin
Identifiers
3D model (JSmol)
ChEMBL
ChemSpider
ECHA InfoCard 100.007.497 OOjs UI icon edit-ltr-progressive.svg
E number E103 (colours)
KEGG
PubChem CID
UNII
  • InChI=1S/C16H16O5/c1-8(2)3-4-10(17)9-7-13(20)14-11(18)5-6-12(19)15(14)16(9)21/h3,5-7,10,17-19H,4H2,1-2H3/t10-/m0/s1 Yes check.svgY
    Key: NEZONWMXZKDMKF-JTQLQIEISA-N Yes check.svgY
  • InChI=1/C16H16O5/c1-8(2)3-4-10(17)9-7-13(20)14-11(18)5-6-12(19)15(14)16(9)21/h3,5-7,10,17-19H,4H2,1-2H3/t10-/m0/s1
  • O=C\2c1c(O)ccc(O)c1C(=O)/C(=C/2)[C@@H](O)CC=C(C)C
Properties [1]
C16H16O5
Molar mass 288.299 g·mol−1
AppearanceRed-brown crystalline prisms
Density 1.15 g/mL
Melting point 149 °C (300 °F; 422 K)
Boiling point 567 °C (1,053 °F; 840 K)
Sparingly soluble
Hazards
Lethal dose or concentration (LD, LC):
3.0 g/kg (mice)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Alkannin is a natural dye that is obtained from the extracts of Alkanna tinctoria which is found in the south of France. The dye is used as a food coloring and in cosmetics; the European E number schedule, it is numbered E103. It is used as a red-brown food additive in regions such as Australia. [2] Alkannin is deep red in an acid and blue in an alkaline environment. [3] The chemical structure as a naphthoquinone derivative was first determined by Brockmann in 1936. [4] The R-enantiomer of alkannin is known as shikonin, and the racemic mixture of the two is known as shikalkin. [5] [6]

Contents

Biosynthesis

The enzyme 4-hydroxybenzoate geranyltransferase utilizes geranyl diphosphate and 4-hydroxybenzoate to produce 3-geranyl-4-hydroxybenzoate and diphosphate. These compounds are then used to form alkannin. [6]

Research

Because the root bark (cork layers) of Alkanna tinctoria contains large amounts of red naphthoquinone pigments, including alkannin, the roots of these plants are red-purple. When extracted from fresh tissues, the pigment gradually darkens over several days, finally forming black precipitates, which are thought to be polymers. [7]

Related Research Articles

<span class="mw-page-title-main">Indigo dye</span> Chemical compound, food additive and dye

Indigo dye is an organic compound with a distinctive blue color. Indigo is a natural dye extracted from the leaves of some plants of the Indigofera genus, in particular Indigofera tinctoria; dye-bearing Indigofera plants were commonly grown and used throughout the world, in Asia in particular, as an important crop, with the production of indigo dyestuff economically important due to the historical rarity of other blue dyestuffs.

<span class="mw-page-title-main">Food coloring</span> Substance used to color to food or drink

Food coloring, or color additive, is any dye, pigment, or substance that imparts color when it is added to food or drink. They can be supplied as liquids, powders, gels, or pastes. Food coloring is used in both commercial food production and domestic cooking. Food colorants are also used in a variety of non-food applications, including cosmetics, pharmaceuticals, home craft projects, and medical devices. Colorings may be natural or artificial/synthetic.

<span class="mw-page-title-main">Thujone</span> Group of four possible stereoisomers found in various plants: a.o., absinthe and mint

Thujone is a ketone and a monoterpene that occurs predominantly in two diastereomeric (epimeric) forms: (−)-α-thujone and (+)-β-thujone.

Carmine – also called cochineal, cochineal extract, crimson lake, or carmine lake – is a pigment of a bright-red color obtained from the aluminium complex derived from carminic acid. Specific code names for the pigment include natural red 4, C.I. 75470, or E120. Carmine is also a general term for a particularly deep-red color.

<span class="mw-page-title-main">Menthol</span> Organic compound used as flavouring and analgesic

Menthol is an organic compound, more specifically a monoterpenoid, made synthetically or obtained from the oils of corn mint, peppermint, or other mints. It is a waxy, clear or white crystalline substance, which is solid at room temperature and melts slightly above.

<span class="mw-page-title-main">Astaxanthin</span> Chemical compound

Astaxanthin is a keto-carotenoid within a group of chemical compounds known as terpenes. Astaxanthin is a metabolite of zeaxanthin and canthaxanthin, containing both hydroxyl and ketone functional groups. It is a lipid-soluble pigment with red coloring properties, which result from the extended chain of conjugated double bonds at the center of the compound. The presence of the hydroxyl functional groups and the hydrophobic hydrocarbons render the molecule amphiphilic.

<span class="mw-page-title-main">Juglone</span> Chemical produced by walnut trees

Juglone, also called 5-hydroxy-1,4-naphthalenedione (IUPAC) is an organic compound with the molecular formula C10H6O3. In the food industry, juglone is also known as C.I. Natural Brown 7 and C.I. 75500. It is insoluble in benzene but soluble in dioxane, from which it crystallizes as yellow needles. It is an isomer of lawsone, which is the active dye compound in the henna leaf.

<span class="mw-page-title-main">4-Hydroxybenzoic acid</span> Chemical compound

4-Hydroxybenzoic acid, also known as p-hydroxybenzoic acid (PHBA), is a monohydroxybenzoic acid, a phenolic derivative of benzoic acid. It is a white crystalline solid that is slightly soluble in water and chloroform but more soluble in polar organic solvents such as alcohols and acetone. 4-Hydroxybenzoic acid is primarily known as the basis for the preparation of its esters, known as parabens, which are used as preservatives in cosmetics and some ophthalmic solutions. It is isomeric with 2-hydroxybenzoic acid, known as salicylic acid, a precursor to aspirin, and with 3-hydroxybenzoic acid.

<span class="mw-page-title-main">Litmus</span> Substance to test chemical acidity

Litmus is a water-soluble mixture of different dyes extracted from lichens. It is often absorbed onto filter paper to produce one of the oldest forms of pH indicator, used to test materials for acidity. In an acidic medium, blue litmus paper turns red, while in a basic or alkaline medium, red litmus paper turns blue. In short, it is a dye and indicator which is used to place substances on a pH scale.

<span class="mw-page-title-main">Anthraquinones</span>

For the parent molecule 9,10-anthraquinone, see anthraquinone

<i>Gomphrena globosa</i> Species of flowering plant

Gomphrena globosa, commonly known as globe amaranth, is an edible plant from the family Amaranthaceae. The round-shaped flower inflorescences are a visually dominant feature and cultivars have been propagated to exhibit shades of magenta, purple, red, orange, white, pink, and lilac. Within the flowerheads, the true flowers are small and inconspicuous.

<span class="mw-page-title-main">Lawsone</span> Chemical compound

Lawsone (2-hydroxy-1,4-naphthoquinone), also known as hennotannic acid, is a red-orange dye present in the leaves of the henna plant, for which it is named, as well as in the common walnut and water hyacinth. Humans have used henna extracts containing lawsone as hair and skin dyes for more than 5,000 years. Lawsone reacts chemically with the protein keratin in skin and hair via a Michael addition reaction, resulting in a strong permanent stain that lasts until the skin or hair is shed. Darker colored staining is due to more lawsone–keratin interactions occurring, which evidently break down as the concentration of lawsone decreases and the tattoo fades. Lawsone strongly absorbs UV light, and aqueous extracts can be effective sunless tanning agents and sunscreens. Lawsone is a 1,4-naphthoquinone derivative, an analog of hydroxyquinone containing one additional ring.

<span class="mw-page-title-main">Anthocyanin</span> Class of chemical compounds

Anthocyanins, also called anthocyans, are water-soluble vacuolar pigments that, depending on their pH, may appear red, purple, blue, or black. In 1835, the German pharmacist Ludwig Clamor Marquart gave the name Anthokyan to a chemical compound that gives flowers a blue color for the first time in his treatise "Die Farben der Blüthen". Food plants rich in anthocyanins include the blueberry, raspberry, black rice, and black soybean, among many others that are red, blue, purple, or black. Some of the colors of autumn leaves are derived from anthocyanins.

<span class="mw-page-title-main">Cochineal</span> Species of insect producing the crimson dye carmine

The cochineal is a scale insect in the suborder Sternorrhyncha, from which the natural dye carmine is derived. A primarily sessile parasite native to tropical and subtropical South America through North America, this insect lives on cacti in the genus Opuntia, feeding on plant moisture and nutrients. The insects are found on the pads of prickly pear cacti, collected by brushing them off the plants, and dried.

<span class="mw-page-title-main">Chrysanthemin</span> Chemical compound

Chrysanthemin is an anthocyanin. It is the 3-glucoside of cyanidin.

<span class="mw-page-title-main">Glossary of dyeing terms</span>

Dyeing is the craft of imparting colors to textiles in loose fiber, yarn, cloth or garment form by treatment with a dye. Archaeologists have found evidence of textile dyeing with natural dyes dating back to the Neolithic period. In China, dyeing with plants, barks and insects has been traced back more than 5,000 years. Natural insect dyes such as Tyrian purple and kermes and plant-based dyes such as woad, indigo and madder were important elements of the economies of Asia and Europe until the discovery of man-made synthetic dyes in the mid-19th century. Synthetic dyes quickly superseded natural dyes for the large-scale commercial textile production enabled by the industrial revolution, but natural dyes remained in use by traditional cultures around the world.

<span class="mw-page-title-main">1,4-Naphthoquinone</span> Chemical compound

1,4-Naphthoquinone or para-naphthoquinone is a quinone derived from naphthalene. It forms volatile yellow triclinic crystals and has a sharp odor similar to benzoquinone. It is almost insoluble in cold water, slightly soluble in petroleum ether, and more soluble in polar organic solvents. In alkaline solutions it produces a reddish-brown color. Vitamin K is a derivative of 1,4-naphthoquinone. It is a planar molecule with one aromatic ring fused to a quinone subunit. It is an isomer of 1,2-naphthoquinone.

4-hydroxybenzoate geranyltransferase is an enzyme with systematic name geranyl-diphosphate:4-hydroxybenzoate 3-geranyltransferase. This enzyme catalyses the following chemical reaction

<i>Lithospermum erythrorhizon</i> Species of flowering plant in the borage family Boraginaceae

Lithospermum erythrorhizon, commonly called purple gromwell, red stoneroot, red gromwell, red-root gromwell and redroot lithospermum, is a plant species in the family Boraginaceae. It is called zǐcǎo (紫草) in Chinese, jichi (지치) in Korean, and murasaki in Japanese.

<i>Hormuzakia aggregata</i> Species of plant

Hormuzakia aggregata is a flowering annual plant in the borage family, known by the common names massed alkanet, Arabic: لسان الثور, and Hebrew: לשון-שור מגובבת.

References

  1. The Merck Index , 11th Edition, 243
  2. Additives Archived 2011-04-06 at the Wayback Machine , Food Standards Australia New Zealand
  3. "Alkanet" in Dispensatory of the United States of America, year 1918, edited by Joseph P. Remington and Horatio C. Wood.
  4. H. Brockmann (1936). "Die Konstitution des Alkannins, Shikonins und Alkannans". Justus Liebigs Ann. Chem. 521: 1–47. doi:10.1002/jlac.19365210102.
  5. Shmuel Yannai (2012). Dictionary of Food Compounds. CRC Press. p. 478.
  6. 1 2 Vassilios P. Papageorgiou; Andreana N. Assimopoulou; Elias A. Couladouros; et al. (1999). "The Chemistry and Biology of Alkannin, Shikonin, and Related Naphthazarin Natural Products". Angew. Chem. Int. Ed. 38 (3): 270–300. doi:10.1002/(SICI)1521-3773(19990201)38:3<270::AID-ANIE270>3.0.CO;2-0. PMID   29711637.
  7. Yazaki, Kazufumi (2017). "Lithospermum erythrorhizon cell cultures: Present and future aspects". Plant Biotechnology. 34 (3): 131–142. doi:10.5511/plantbiotechnology.17.0823a. PMC   6565996 . PMID   31275019.