Anaeromyxobacter dehalogenans

Last updated

Anaeromyxobacter dehalogenans
Scientific classification
Domain:
Phylum:
Class:
Order:
Family:
Genus:
Species:
A. dehalogenans
Binomial name
Anaeromyxobacter dehalogenans
Sanford et al. 2002

Anaeromyxobacter dehalogenans is a species of bacteria. [1] It is an aryl-halorespiring facultative anaerobic myxobacterium. Its cells are slender, gram-negative rods with a bright red pigmentation that exhibit gliding motility and form spore-like structures. The type strain is 2CP-1 (ATCC BAA-258). Anaeromyxobacter dehalogenans have been found to grow under a minimal amount of electrons acceptors.

Contents

Genomics

A. dehalogenans is part of the order Myxococcales and are the first anaerobes in this order(2).  The suborder is between Cystobacterineae and the other two suborders, Sorangineae and Nannocystineae There is no other organism outside the delta-Proteobacteria that contributed more than 1.7% of the Anaeromyxobacter genome.[ citation needed ] A. dehalogenans does not have denitrification genes nirS and nirK, but does have narG, napA nrfA gene, and the nosZ gene. [2] Because the bacterium lacks nirK and nirS and because of the reductional abilities A. dehalogenans does not qualify to be a denitrifier.  

Anaeromyxobacter dehalogenans enlarged and shows the myxobacteriums motility Pone.0002103.g004.tif
Anaeromyxobacter dehalogenans enlarged and shows the myxobacteriums motility

Metabolism

The microbe has the ability to grow in 2,6-dichlorophenol, 2,5-dichlorophenol, 2-bromophenol, nitrate, fumarate, and oxygen.[ citation needed ]

Delta-Proteobacterium, Anaeromyxobacter dehalogenans can be found in a variety of different types of soils and sediments. Traits describing Anaeromyxobacter dehalogenans include reproduction via spores, aerobic, advanced signaling and fruiting body formation.[ citation needed ] The microbe grows by reducing Fe(III) to Fe(II). These abilities of reducing iron and lacking nirS and nirK are not strictly unique to A. dehalogenans. [2] The acetate threshold for acetate in A. dehalogenans  measured  69 ± 4, 19 ± 8, and <1 nM for chlororespiration, amorphous Fe(III) reduction, and Fe(III) citrate reduction. These concentrations allow for comparisons of metabolism in a single organism under different environmental conditions. [3] The spores and fruiting body of these organisms are a response to unfavorable environments that the microbe may face, including low nutrient availability.[ citation needed ]

Related Research Articles

Primary nutritional groups are groups of organisms, divided in relation to the nutrition mode according to the sources of energy and carbon, needed for living, growth and reproduction. The sources of energy can be light or chemical compounds; the sources of carbon can be of organic or inorganic origin.

A mesophile is an organism that grows best in moderate temperature, neither too hot nor too cold, with an optimum growth range from 20 to 45 °C. The optimum growth temperature for these organisms is 37°C. The term is mainly applied to microorganisms. Organisms that prefer extreme environments are known as extremophiles. Mesophiles have diverse classifications, belonging to two domains: Bacteria, Archaea, and to kingdom Fungi of domain Eucarya. Mesophiles belonging to the domain Bacteria can either be gram-positive or gram-negative. Oxygen requirements for mesophiles can be aerobic or anaerobic. There are three basic shapes of mesophiles: coccus, bacillus, and spiral.

Ferroglobus is a genus of the Archaeoglobaceae.

Sulfur-reducing bacteria are microorganisms able to reduce elemental sulfur (S0) to hydrogen sulfide (H2S). These microbes use inorganic sulfur compounds as electron acceptors to sustain several activities such as respiration, conserving energy and growth, in absence of oxygen. The final product or these processes, sulfide, has a considerable influence on the chemistry of the environment and, in addition, is used as electron donor for a large variety of microbial metabolisms. Several types of bacteria and many non-methanogenic archaea can reduce sulfur. Microbial sulfur reduction was already shown in early studies, which highlighted the first proof of S0 reduction in a vibrioid bacterium from mud, with sulfur as electron acceptor and H
2
as electron donor. The first pure cultured species of sulfur-reducing bacteria, Desulfuromonas acetoxidans, was discovered in 1976 and described by Pfennig Norbert and Biebel Hanno as an anaerobic sulfur-reducing and acetate-oxidizing bacterium, not able to reduce sulfate. Only few taxa are true sulfur-reducing bacteria, using sulfur reduction as the only or main catabolic reaction. Normally, they couple this reaction with the oxidation of acetate, succinate or other organic compounds. In general, sulfate-reducing bacteria are able to use both sulfate and elemental sulfur as electron acceptors. Thanks to its abundancy and thermodynamic stability, sulfate is the most studied electron acceptor for anaerobic respiration that involves sulfur compounds. Elemental sulfur, however, is very abundant and important, especially in deep-sea hydrothermal vents, hot springs and other extreme environments, making its isolation more difficult. Some bacteria – such as Proteus, Campylobacter, Pseudomonas and Salmonella – have the ability to reduce sulfur, but can also use oxygen and other terminal electron acceptors.

Halorespiration or dehalorespiration or organohalide respiration is the use of halogenated compounds as terminal electron acceptors in anaerobic respiration. Halorespiration can play a part in microbial biodegradation. The most common substrates are chlorinated aliphatics, chlorinated phenols and chloroform. Dehalorespiring bacteria are highly diverse. This trait is found in some Campylobacterota, Thermodesulfobacteriota, Chloroflexota, low G+C gram positive Clostridia, and ultramicrobacteria.

Microbial metabolism is the means by which a microbe obtains the energy and nutrients it needs to live and reproduce. Microbes use many different types of metabolic strategies and species can often be differentiated from each other based on metabolic characteristics. The specific metabolic properties of a microbe are the major factors in determining that microbe's ecological niche, and often allow for that microbe to be useful in industrial processes or responsible for biogeochemical cycles.

Dehalococcoides is a genus of bacteria within class Dehalococcoidia that obtain energy via the oxidation of hydrogen and subsequent reductive dehalogenation of halogenated organic compounds in a mode of anaerobic respiration called organohalide respiration. They are well known for their great potential to remediate halogenated ethenes and aromatics. They are the only bacteria known to transform highly chlorinated dioxins, PCBs. In addition, they are the only known bacteria to transform tetrachloroethene to ethene.

<i>Pseudomonas stutzeri</i> Species of bacterium

Pseudomonas stutzeri is a Gram-negative soil bacterium that is motile, has a single polar flagellum, and is classified as bacillus, or rod-shaped. While this bacterium was first isolated from human spinal fluid, it has since been found in many different environments due to its various characteristics and metabolic capabilities. P. stutzeri is an opportunistic pathogen in clinical settings, although infections are rare. Based on 16S rRNA analysis, this bacterium has been placed in the P. stutzeri group, to which it lends its name.

<i>Shewanella</i> Genus of bacteria

Shewanella is the sole genus included in the marine bacteria family Shewanellaceae. Some species within it were formerly classed as Alteromonas. Shewanella consists of facultatively anaerobic Gram-negative rods, most of which are found in extreme aquatic habitats where the temperature is very low and the pressure is very high. Shewanella bacteria are a normal component of the surface flora of fish and are implicated in fish spoilage. Shewanella chilikensis, a species of the genus Shewanella commonly found in the marine sponges of Saint Martin's Island of the Bay of Bengal, Bangladesh.

<i>Shewanella oneidensis</i> Species of bacterium

Shewanella oneidensis is a bacterium notable for its ability to reduce metal ions and live in environments with or without oxygen. This proteobacterium was first isolated from Lake Oneida, NY in 1988, hence its name.

Dechloromonas agitata strain CKB is a dissimilatory perchlorate reducing bacterium (DRPB) that was isolated from paper mill waste. Strain CKB is a Gram negative, facultative anaerobe belonging to the Betaproteobacteria. The cells of strain CKB are highly motile and possess a single polar flagellum. D. agitata can couple the oxidation of several electron donors such as acetate, propionate, butyrate, lactate, succinate, fumarate, malate or yeast extract to electron acceptors such as oxygen, chlorate, perchlorate, ferrous iron, sulphide, and reduced humic substances like 2,6-anthrahydroquinone disulphonate. Unlike other perchlorate reducers, strain CKB cannot grow by nitrate reduction, which suggests that the pathways of nitrate and perchlorate reduction are distinct and unrelated, contrary to what previous research had shown.

The fnr gene of Escherichia coli encodes a transcriptional activator (FNR) which is required for the expression of a number of genes involved in anaerobic respiratory pathways. The FNR protein of E. coli is an oxygen – responsive transcriptional regulator required for the switch from aerobic to anaerobic metabolism.

"Type III mutants, originally frdB, were designated fnr because they were defective in fumarate and nitrate reduction and impaired in their ability to produce gas." - Lambden and Guest, 1976 Journal of General Microbiology97, 145-160

Geothrix fermentans is a rod-shaped, anaerobic bacterium. It is about 0.1 µm in diameter and ranges from 2-3 µm in length. Cell arrangement occurs singly and in chains. Geothrix fermentans can normally be found in aquatic sediments such as in aquifers. As an anaerobic chemoorganotroph, this organism is best known for its ability to use electron acceptors Fe(III), as well as other high potential metals. It also uses a wide range of substrates as electron donors. Research on metal reduction by G. fermentans has contributed to understanding more about the geochemical cycling of metals in the environment.

Geobacter metallireducens is a gram-negative metal-reducing proteobacterium. It is a strict anaerobe that oxidizes several short-chain fatty acids, alcohols, and monoaromatic compounds with Fe(III) as the sole electron acceptor. It can also use uranium for its growth and convert U(VI) to U(IV).

Desulfitobacterium dehalogenans is a species of bacteria. They are facultative organohalide respiring bacteria capable of reductively dechlorinating chlorophenolic compounds and tetrachloroethene. They are anaerobic, motile, Gram-positive and rod-shaped bacteria capable of utilizing a wide range of electron donors and acceptors. The type strain JW/IU-DCT, DSM 9161, NCBi taxonomy ID 756499.

Desulfitobacterium chlororespirans is a Gram-positive, anaerobic, spore-forming species of bacteria. Its type strain is Co23. It grows by coupling the oxidation of lactate to the reductive dechlorination of 3-chloro-4-hydroxybenzoate.

Geopsychrobacter electrodiphilus is a species of bacteria, the type species of its genus. It is a psychrotolerant member of its family, capable of attaching to the anodes of sediment fuel cells and harvesting electricity by oxidation of organic compounds to carbon dioxide and transferring the electrons to the anode.

Rhodoferax is a genus of Betaproteobacteria belonging to the purple nonsulfur bacteria. Originally, Rhodoferax species were included in the genus Rhodocyclus as the Rhodocyclus gelatinous-like group. The genus Rhodoferax was first proposed in 1991 to accommodate the taxonomic and phylogenetic discrepancies arising from its inclusion in the genus Rhodocyclus. Rhodoferax currently comprises four described species: R. fermentans, R. antarcticus, R. ferrireducens, and R. saidenbachensis. R. ferrireducens, lacks the typical phototrophic character common to two other Rhodoferax species. This difference has led researchers to propose the creation of a new genus, Albidoferax, to accommodate this divergent species. The genus name was later corrected to Albidiferax. Based on geno- and phenotypical characteristics, A. ferrireducens was reclassified in the genus Rhodoferax in 2014. R. saidenbachensis, a second non-phototrophic species of the genus Rhodoferax was described by Kaden et al. in 2014.

Thermotoga lettingae is a thermophilic, anaerobic, non-spore-forming, motile and Gram-negative bacterium, with type strain TMOT.

Dehalogenimonas lykanthroporepellens is an anaerobic, Gram-negative bacteria in the phylum Chloroflexota isolated from a Superfund site in Baton Rouge, Louisiana. It is useful in bioremediation for its ability to reductively dehalogenate chlorinated alkanes.

References

  1. Sanford RA, Cole JR, Tiedje JM (February 2002). "Characterization and description of Anaeromyxobacter dehalogenans gen. nov., sp. nov., an aryl-halorespiring facultative anaerobic myxobacterium". Applied and Environmental Microbiology . 68 (2): 893–900. doi:10.1128/aem.68.2.893-900.2002. PMC   126698 . PMID   11823233.
  2. 1 2 Smith, R. J.; Bryant, R. G. (1975-10-27). "Metal substitutions incarbonic anhydrase: a halide ion probe study". Biochemical and Biophysical Research Communications. 66 (4): 1281–1286. doi:10.1016/0006-291x(75)90498-2. ISSN   0006-291X. PMID   3.
  3. Sanford, Robert A.; Cole, James R.; Tiedje, James M. (February 2002). "Characterization and Description of Anaeromyxobacter dehalogenans gen. nov., sp. nov., an Aryl-Halorespiring Facultative Anaerobic Myxobacterium". Applied and Environmental Microbiology. 68 (2): 893–900. doi:10.1128/AEM.68.2.893-900.2002. ISSN   0099-2240. PMC   126698 . PMID   11823233.

Further reading