Angular momentum of light

Last updated
The total angular momentum of light consists of two components, both of which act in a different way on a massive colloidal particle inserted into the beam. The spin component causes the particle to spin around its axis, while the other component, known as orbital angular momentum (OAM), causes the particle to rotate around the axis of the beam.

The angular momentum of light is a vector quantity that expresses the amount of dynamical rotation present in the electromagnetic field of the light. While traveling approximately in a straight line, a beam of light can also be rotating (or "spinning", or "twisting") around its own axis. This rotation, while not visible to the naked eye, can be revealed by the interaction of the light beam with matter.

Contents

There are two distinct forms of rotation of a light beam, one involving its polarization and the other its wavefront shape. These two forms of rotation are therefore associated with two distinct forms of angular momentum, respectively named light spin angular momentum (SAM) and light orbital angular momentum (OAM).

The total angular momentum of light (or, more generally, of the electromagnetic field and the other force fields) and matter is conserved in time.

Introduction

Light, or more generally an electromagnetic wave, carries not only energy but also momentum, which is a characteristic property of all objects in translational motion. The existence of this momentum becomes apparent in the " radiation pressure " phenomenon, in which a light beam transfers its momentum to an absorbing or scattering object, generating a mechanical pressure on it in the process.

Light may also carry angular momentum, which is a property of all objects in rotational motion. For example, a light beam can be rotating around its own axis while it propagates forward. Again, the existence of this angular momentum can be made evident by transferring it to small absorbing or scattering particles, which are thus subject to an optical torque.

For a light beam, one can usually distinguish two "forms of rotation", the first associated with the dynamical rotation of the electric and magnetic fields around the propagation direction, and the second with the dynamical rotation of light rays around the main beam axis. These two rotations are associated with two forms of angular momentum, namely SAM and OAM. However this distinction becomes blurred for strongly focused or diverging beams, and in the general case only the total angular momentum of a light field can be defined. An important limiting case in which the distinction is instead clear and unambiguous is that of a " paraxial " light beam, that is a well collimated beam in which all light rays (or, more precisely, all Fourier components of the optical field) only form small angles with the beam axis.

For such a beam, SAM is strictly related with the optical polarization, and in particular with the so-called circular polarization. OAM is related with the spatial field distribution, and in particular with the wavefront helical shape.

In addition to these two terms, if the origin of coordinates is located outside the beam axis, there is a third angular momentum contribution obtained as the cross-product of the beam position and its total momentum. This third term is also called "orbital", because it depends on the spatial distribution of the field. However, since its value is dependent from the choice of the origin, it is termed "external" orbital angular momentum, as opposed to the "internal" OAM appearing for helical beams.

Mathematical expressions for the angular momentum of light

One commonly used expression for the total angular momentum of an electromagnetic field is the following one, in which there is no explicit distinction between the two forms of rotation:

where and are the electric and magnetic fields, respectively, is the vacuum permittivity and we are using SI units.

However, another expression of the angular momentum naturally arising from Noether’s theorem is the following one, in which there are two separate terms that may be associated with SAM () and OAM (): [1]

where is the vector potential of the magnetic field, and the i-superscripted symbols denote the cartesian components of the corresponding vectors.

These two expressions can be proved to be equivalent to each other for any electromagnetic field that satisfies Maxwell’s equations with no source charges and vanishes fast enough outside a finite region of space. The two terms in the second expression however are physically ambiguous, as they are not gauge-invariant. A gauge-invariant version can be obtained by replacing the vector potential A and the electric field E with their “transverse” or radiative component and , thus obtaining the following expression:

A justification for taking this step is yet to be provided. The latter expression has further problems, as it can be shown that the two terms are not true angular momenta as they do not obey the correct quantum commutation rules. Their sum, that is the total angular momentum, instead does.[ citation needed ]

An equivalent but simpler expression for a monochromatic wave of frequency ω, using the complex notation for the fields, is the following: [2]

Let us now consider the paraxial limit, with the beam axis assumed to coincide with the z axis of the coordinate system. In this limit the only significant component of the angular momentum is the z one, that is the angular momentum measuring the light beam rotation around its own axis, while the other two components are negligible.

where and denote the left and right circular polarization components, respectively.

Exchange of spin and orbital angular momentum with matter

Spin and orbital angular momentum interaction with matter Sam-oam-interaction.png
Spin and orbital angular momentum interaction with matter

When a light beam carrying nonzero angular momentum impinges on an absorbing particle, its angular momentum can be transferred on the particle, thus setting it in rotational motion. This occurs both with SAM and OAM. However, if the particle is not at the beam center the two angular momenta will give rise to different kinds of rotation of the particle. SAM will give rise to a rotation of the particle around its own center, i.e., to a particle spinning. OAM, instead, will generate a revolution of the particle around the beam axis. [3] [4] [5] These phenomena are schematically illustrated in the figure.

In the case of transparent media, in the paraxial limit, the optical SAM is mainly exchanged with anisotropic systems, for example birefringent crystals. Indeed, thin slabs of birefringent crystals are commonly used to manipulate the light polarization. Whenever the polarization ellipticity is changed, in the process, there is an exchange of SAM between light and the crystal. If the crystal is free to rotate, it will do so. Otherwise, the SAM is finally transferred to the holder and to the Earth.

Spiral phase plate (SPP)

Schematic of generating light orbital angular momentum with spiral phase plate. Spiral-phase-plate.png
Schematic of generating light orbital angular momentum with spiral phase plate.

In the paraxial limit, the OAM of a light beam can be exchanged with material media that have a transverse spatial inhomogeneity. For example, a light beam can acquire OAM by crossing a spiral phase plate, with an inhomogeneous thickness (see figure). [6]

Pitch-fork hologram

Schematic showing generation of orbital angular momentum of light in a Gaussian beam. Hologram generation.png
Schematic showing generation of orbital angular momentum of light in a Gaussian beam.

A more convenient approach for generating OAM is based on using diffraction on a fork-like or pitchfork hologram (see figure). [7] [8] [9] [10] Holograms can be also generated dynamically under the control of a computer by using a spatial light modulator. [11]

Q-plate

The q-plate effect for left and right-hand circular polarizations. Q-plate.png
The q-plate effect for left and right-hand circular polarizations.

Another method for generating OAM is based on the SAM-OAM coupling that may occur in a medium which is both anisotropic and inhomogeneous. In particular, the so-called q-plate is a device, currently realized using liquid crystals, polymers or sub-wavelength gratings, which can generate OAM by exploiting a SAM sign-change. In this case, the OAM sign is controlled by the input polarization. [12] [13] [14]

Cylindrical mode converters

pi/2-cylindrical mode converter transforms HG mode into a proper LG mode. Mode-converter.png
pi/2-cylindrical mode converter transforms HG mode into a proper LG mode.

OAM can also be generated by converting a Hermite-Gaussian beam into a Laguerre-Gaussian one by using an astigmatic system with two well-aligned cylindrical lenses placed at a specific distance (see figure) in order to introduce a well-defined relative phase between horizontal and vertical Hermite-Gaussian beams. [15]

Possible applications of the orbital angular momentum of light

The applications of the spin angular momentum of light are undistinguishable from the innumerable applications of the light polarization and will not be discussed here. The possible applications of the orbital angular momentum of light are instead currently the subject of research. In particular, the following applications have been already demonstrated in research laboratories, although they have not yet reached the stage of commercialization:

  1. Orientational manipulation of particles or particle aggregates in optical tweezers [16]
  2. High-bandwidth information encoding in free-space optical communication [17]
  3. Higher-dimensional quantum information encoding, for possible future quantum cryptography or quantum computation applications [18] [19] [20]
  4. Sensitive optical detection [21]

See also

Related Research Articles

<span class="mw-page-title-main">Angular momentum</span> Conserved physical quantity; rotational analogue of linear momentum

In physics, angular momentum is the rotational analog of linear momentum. It is an important physical quantity because it is a conserved quantity – the total angular momentum of a closed system remains constant. Angular momentum has both a direction and a magnitude, and both are conserved. Bicycles and motorcycles, flying discs, rifled bullets, and gyroscopes owe their useful properties to conservation of angular momentum. Conservation of angular momentum is also why hurricanes form spirals and neutron stars have high rotational rates. In general, conservation limits the possible motion of a system, but it does not uniquely determine it.

In physics, the cross section is a measure of the probability that a specific process will take place when some kind of radiant excitation intersects a localized phenomenon. For example, the Rutherford cross-section is a measure of probability that an alpha particle will be deflected by a given angle during an interaction with an atomic nucleus. Cross section is typically denoted σ (sigma) and is expressed in units of area, more specifically in barns. In a way, it can be thought of as the size of the object that the excitation must hit in order for the process to occur, but more exactly, it is a parameter of a stochastic process.

<span class="mw-page-title-main">Nonlinear optics</span> Branch of physics

Nonlinear optics (NLO) is the branch of optics that describes the behaviour of light in nonlinear media, that is, media in which the polarization density P responds non-linearly to the electric field E of the light. The non-linearity is typically observed only at very high light intensities (when the electric field of the light is >108 V/m and thus comparable to the atomic electric field of ~1011 V/m) such as those provided by lasers. Above the Schwinger limit, the vacuum itself is expected to become nonlinear. In nonlinear optics, the superposition principle no longer holds.

A magneto-optic effect is any one of a number of phenomena in which an electromagnetic wave propagates through a medium that has been altered by the presence of a quasistatic magnetic field. In such a medium, which is also called gyrotropic or gyromagnetic, left- and right-rotating elliptical polarizations can propagate at different speeds, leading to a number of important phenomena. When light is transmitted through a layer of magneto-optic material, the result is called the Faraday effect: the plane of polarization can be rotated, forming a Faraday rotator. The results of reflection from a magneto-optic material are known as the magneto-optic Kerr effect.

Circular dichroism (CD) is dichroism involving circularly polarized light, i.e., the differential absorption of left- and right-handed light. Left-hand circular (LHC) and right-hand circular (RHC) polarized light represent two possible spin angular momentum states for a photon, and so circular dichroism is also referred to as dichroism for spin angular momentum. This phenomenon was discovered by Jean-Baptiste Biot, Augustin Fresnel, and Aimé Cotton in the first half of the 19th century. Circular dichroism and circular birefringence are manifestations of optical activity. It is exhibited in the absorption bands of optically active chiral molecules. CD spectroscopy has a wide range of applications in many different fields. Most notably, UV CD is used to investigate the secondary structure of proteins. UV/Vis CD is used to investigate charge-transfer transitions. Near-infrared CD is used to investigate geometric and electronic structure by probing metal d→d transitions. Vibrational circular dichroism, which uses light from the infrared energy region, is used for structural studies of small organic molecules, and most recently proteins and DNA.

Optical tweezers are scientific instruments that use a highly focused laser beam to hold and move microscopic and sub-microscopic objects like atoms, nanoparticles and droplets, in a manner similar to tweezers. If the object is held in air or vacuum without additional support, it can be called optical levitation.

The Kerr effect, also called the quadratic electro-optic (QEO) effect, is a change in the refractive index of a material in response to an applied electric field. The Kerr effect is distinct from the Pockels effect in that the induced index change is directly proportional to the square of the electric field instead of varying linearly with it. All materials show a Kerr effect, but certain liquids display it more strongly than others. The Kerr effect was discovered in 1875 by Scottish physicist John Kerr.

In classical mechanics, the Laplace–Runge–Lenz (LRL) vector is a vector used chiefly to describe the shape and orientation of the orbit of one astronomical body around another, such as a binary star or a planet revolving around a star. For two bodies interacting by Newtonian gravity, the LRL vector is a constant of motion, meaning that it is the same no matter where it is calculated on the orbit; equivalently, the LRL vector is said to be conserved. More generally, the LRL vector is conserved in all problems in which two bodies interact by a central force that varies as the inverse square of the distance between them; such problems are called Kepler problems.

<span class="mw-page-title-main">Optical vortex</span> Optical phenomenon

An optical vortex is a zero of an optical field; a point of zero intensity. The term is also used to describe a beam of light that has such a zero in it. The study of these phenomena is known as singular optics.

In atomic, molecular, and optical physics and quantum chemistry, the molecular Hamiltonian is the Hamiltonian operator representing the energy of the electrons and nuclei in a molecule. This operator and the associated Schrödinger equation play a central role in computational chemistry and physics for computing properties of molecules and aggregates of molecules, such as thermal conductivity, specific heat, electrical conductivity, optical, and magnetic properties, and reactivity.

The Einstein–de Haas effect is a physical phenomenon in which a change in the magnetic moment of a free body causes this body to rotate. The effect is a consequence of the conservation of angular momentum. It is strong enough to be observable in ferromagnetic materials. The experimental observation and accurate measurement of the effect demonstrated that the phenomenon of magnetization is caused by the alignment (polarization) of the angular momenta of the electrons in the material along the axis of magnetization. These measurements also allow the separation of the two contributions to the magnetization: that which is associated with the spin and with the orbital motion of the electrons. The effect also demonstrated the close relation between the notions of angular momentum in classical and in quantum physics.

The spin angular momentum of light (SAM) is the component of angular momentum of light that is associated with the quantum spin and the rotation between the polarization degrees of freedom of the photon.

<span class="mw-page-title-main">Orbital angular momentum of light</span> Type of angular momentum in light

The orbital angular momentum of light (OAM) is the component of angular momentum of a light beam that is dependent on the field spatial distribution, and not on the polarization. It can be further split into an internal and an external OAM. The internal OAM is an origin-independent angular momentum of a light beam that can be associated with a helical or twisted wavefront. The external OAM is the origin-dependent angular momentum that can be obtained as cross product of the light beam position and its total linear momentum.

<span class="mw-page-title-main">Two-body Dirac equations</span> Quantum field theory equations

In quantum field theory, and in the significant subfields of quantum electrodynamics (QED) and quantum chromodynamics (QCD), the two-body Dirac equations (TBDE) of constraint dynamics provide a three-dimensional yet manifestly covariant reformulation of the Bethe–Salpeter equation for two spin-1/2 particles. Such a reformulation is necessary since without it, as shown by Nakanishi, the Bethe–Salpeter equation possesses negative-norm solutions arising from the presence of an essentially relativistic degree of freedom, the relative time. These "ghost" states have spoiled the naive interpretation of the Bethe–Salpeter equation as a quantum mechanical wave equation. The two-body Dirac equations of constraint dynamics rectify this flaw. The forms of these equations can not only be derived from quantum field theory they can also be derived purely in the context of Dirac's constraint dynamics and relativistic mechanics and quantum mechanics. Their structures, unlike the more familiar two-body Dirac equation of Breit, which is a single equation, are that of two simultaneous quantum relativistic wave equations. A single two-body Dirac equation similar to the Breit equation can be derived from the TBDE. Unlike the Breit equation, it is manifestly covariant and free from the types of singularities that prevent a strictly nonperturbative treatment of the Breit equation. In applications of the TBDE to QED, the two particles interact by way of four-vector potentials derived from the field theoretic electromagnetic interactions between the two particles. In applications to QCD, the two particles interact by way of four-vector potentials and Lorentz invariant scalar interactions, derived in part from the field theoretic chromomagnetic interactions between the quarks and in part by phenomenological considerations. As with the Breit equation a sixteen-component spinor Ψ is used.

<span class="mw-page-title-main">Orbital angular momentum multiplexing</span> Optical multiplexing technique

Orbital angular momentum (OAM) multiplexing is a physical layer method for multiplexing signals carried on electromagnetic waves using the orbital angular momentum of the electromagnetic waves to distinguish between the different orthogonal signals.

<span class="mw-page-title-main">Relativistic angular momentum</span> Angular momentum in special and general relativity

In physics, relativistic angular momentum refers to the mathematical formalisms and physical concepts that define angular momentum in special relativity (SR) and general relativity (GR). The relativistic quantity is subtly different from the three-dimensional quantity in classical mechanics.

The semiconductor Bloch equations describe the optical response of semiconductors excited by coherent classical light sources, such as lasers. They are based on a full quantum theory, and form a closed set of integro-differential equations for the quantum dynamics of microscopic polarization and charge carrier distribution. The SBEs are named after the structural analogy to the optical Bloch equations that describe the excitation dynamics in a two-level atom interacting with a classical electromagnetic field. As the major complication beyond the atomic approach, the SBEs must address the many-body interactions resulting from Coulomb force among charges and the coupling among lattice vibrations and electrons.

The interaction of matter with light, i.e., electromagnetic fields, is able to generate a coherent superposition of excited quantum states in the material. Coherent denotes the fact that the material excitations have a well defined phase relation which originates from the phase of the incident electromagnetic wave. Macroscopically, the superposition state of the material results in an optical polarization, i.e., a rapidly oscillating dipole density. The optical polarization is a genuine non-equilibrium quantity that decays to zero when the excited system relaxes to its equilibrium state after the electromagnetic pulse is switched off. Due to this decay which is called dephasing, coherent effects are observable only for a certain temporal duration after pulsed photoexcitation. Various materials such as atoms, molecules, metals, insulators, semiconductors are studied using coherent optical spectroscopy and such experiments and their theoretical analysis has revealed a wealth of insights on the involved matter states and their dynamical evolution.

<span class="mw-page-title-main">Symmetry in quantum mechanics</span> Properties underlying modern physics

Symmetries in quantum mechanics describe features of spacetime and particles which are unchanged under some transformation, in the context of quantum mechanics, relativistic quantum mechanics and quantum field theory, and with applications in the mathematical formulation of the standard model and condensed matter physics. In general, symmetry in physics, invariance, and conservation laws, are fundamentally important constraints for formulating physical theories and models. In practice, they are powerful methods for solving problems and predicting what can happen. While conservation laws do not always give the answer to the problem directly, they form the correct constraints and the first steps to solving a multitude of problems.

<span class="mw-page-title-main">Orbital angular momentum of free electrons</span>

Electrons in free space can carry quantized orbital angular momentum (OAM) projected along the direction of propagation. This orbital angular momentum corresponds to helical wavefronts, or, equivalently, a phase proportional to the azimuthal angle. Electron beams with quantized orbital angular momentum are also called electron vortex beams.

References

  1. Belintante, F. J. (1940). "On the current and the density of the electric charge, the energy, the linear momentum and the angular momentum of arbitrary fields". Physica. 7 (5): 449. Bibcode:1940Phy.....7..449B. CiteSeerX   10.1.1.205.8093 . doi:10.1016/S0031-8914(40)90091-X.
  2. Humblet, J. (1943). "Sur le moment d'impulsion d'une onde electromagnetique". Physica. 10 (7): 585. Bibcode:1943Phy....10..585H. doi:10.1016/S0031-8914(43)90626-3.
  3. He, H.; Friese, M.; Heckenberg, N.; Rubinsztein-Dunlop, H. (1995). "Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity" (PDF). Physical Review Letters. 75 (5): 826–829. Bibcode:1995PhRvL..75..826H. doi:10.1103/PhysRevLett.75.826. PMID   10060128.
  4. Simpson, N. B.; Dholakia, K.; Allen, L.; Padgett, M. J. (1997). "Mechanical equivalence of spin and orbital angular momentum of light: An optical spanner". Optics Letters. 22 (1): 52–4. Bibcode:1997OptL...22...52S. CiteSeerX   10.1.1.205.5751 . doi:10.1364/OL.22.000052. PMID   18183100.
  5. O'Neil, A. T.; MacVicar, I.; Allen, L.; Padgett, M. (2002). "Intrinsic and extrinsic nature of the orbital angular momentum of a light beam". Physical Review Letters. 88 (5): 053601. Bibcode:2002PhRvL..88e3601O. doi:10.1103/PhysRevLett.88.053601. PMID   11863722.
  6. Beijersbergen, M. W.; Coerwinkel, R.P.C.; Kristensen, M.; Woerdman, J.P. (1994). "Helical-wavefront laser beams produced with a spiral phase plate". Optics Communications. 112 (5–6): 321. Bibcode:1994OptCo.112..321B. doi:10.1016/0030-4018(94)90638-6.
  7. Bazhenov, V.Yu.; Vasnetsov, M.V.; Soskin, M.S. (1990). "Laser beams with screw dislocations in their wavefronts" (PDF). JETP Letters. 52 (8): 429–431. Archived from the original (PDF) on 2017-12-15. Retrieved 2011-09-27.
  8. Bazhenov, V.Yu.; Soskin, M.S.; Vasnetsov, M.V. (1992). "Screw Dislocations in Light Wavefronts". Journal of Modern Optics. 39 (5): 985. Bibcode:1992JMOp...39..985B. doi:10.1080/09500349214551011.
  9. Heckenberg, N. R.; McDuff, R.; Smith, C. P.; Rubinsztein-Dunlop, H.; Wegener, M. J. (1992). "Laser beams with phase singularities". Optical and Quantum Electronics . 24 (9): S951. doi:10.1007/BF01588597. S2CID   119660334.
  10. Soskin, M.; Gorshkov, V.; Vasnetsov, M.; Malos, J.; Heckenberg, N. (1997). "Topological charge and angular momentum of light beams carrying optical vortices" (PDF). Phys. Rev. A. 56 (5): 4064. Bibcode:1997PhRvA..56.4064S. doi:10.1103/PhysRevA.56.4064. S2CID   53501305.
  11. Heckenberg, N. R.; McDuff, R; Smith, CP; White, AG (1992). "Generation of optical phase singularities by computer-generated holograms". Optics Letters. 17 (3): 221. Bibcode:1992OptL...17..221H. CiteSeerX   10.1.1.472.1077 . doi:10.1364/OL.17.000221. PMID   19784282.
  12. Marrucci, L.; Manzo, C.; Paparo, D. (2006). "Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media". Physical Review Letters. 96 (16): 163905. arXiv: 0712.0099 . Bibcode:2006PhRvL..96p3905M. doi:10.1103/PhysRevLett.96.163905. PMID   16712234. S2CID   15600569.
  13. Karimi, E.; Piccirillo, Bruno; Nagali, Eleonora; Marrucci, Lorenzo; Santamato, Enrico (2009). "Efficient generation and sorting of orbital angular momentum eigenmodes of light by thermally tuned q-plates". Applied Physics Letters. 94 (23): 231124. arXiv: 0905.0562 . Bibcode:2009ApPhL..94w1124K. doi:10.1063/1.3154549. S2CID   52203556.
  14. Gecevicius, M.; Drevinskas, R.; Beresna, M.; Kazansky, P.G. (2014). "Single beam optical vortex tweezers with tunable orbital angular momentum". Applied Physics Letters. 104 (23): 231110. Bibcode:2014ApPhL.104w1110G. doi:10.1063/1.4882418.
  15. Allen, L.; Beijersbergen, M.; Spreeuw, R.; Woerdman, J. (1992). "Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes". Phys. Rev. A. 45 (11): 8185–8189. Bibcode:1992PhRvA..45.8185A. doi:10.1103/PhysRevA.45.8185. PMID   9906912.
  16. Friese, M. E. J.; Enger, J; Rubinsztein-Dunlop, H; Heckenberg, NR (1996). "Optical angular-momentum transfer to trapped absorbing particles" (PDF). Phys. Rev. A. 54 (2): 1593–1596. Bibcode:1996PhRvA..54.1593F. doi:10.1103/PhysRevA.54.1593. PMID   9913630.
  17. Gibson, G.; Courtial, Johannes; Padgett, Miles J.; Vasnetsov, Mikhail; Pas'Ko, Valeriy; Barnett, Stephen M.; Franke-Arnold, Sonja (2004). "Free-space information transfer using light beams carrying orbital angular momentum". Optics Express. 12 (22): 5448–56. Bibcode:2004OExpr..12.5448G. doi: 10.1364/OPEX.12.005448 . PMID   19484105.
  18. Malik, M.; O’Sullivan, Malcolm; Rodenburg, Brandon; Mirhosseini, Mohammad; Leach, Jonathan; Lavery, Martin P. J.; Padgett, Miles J.; Boyd, Robert W. (2012). "Influence of atmospheric turbulence on optical communications using orbital angular momentum for encoding". Optics Express. 20 (12): 13195–200. arXiv: 1204.5781 . Bibcode:2012OExpr..2013195M. doi:10.1364/OE.20.013195. PMID   22714347. S2CID   22554538.
  19. Boyd, R.W.; Jha, Anand; Malik, Mehul; O'Sullivan, Colin; Rodenburg, Brandon; Gauthier, Daniel J. (2011). Hasan, Zameer U; Hemmer, Philip R; Lee, Hwang; Santori, Charles M (eds.). "Quantum key distribution in a high-dimensional state space: exploiting the transverse degree of freedom of the photon". Proc. SPIE. Advances in Photonics of Quantum Computing, Memory, and Communication IV. 7948: 79480L. Bibcode:2011SPIE.7948E..0LB. doi:10.1117/12.873491. S2CID   16918229.
  20. Barreiro, J. T.; Wei, Tzu-Chieh; Kwiat, Paul G. (2008). "Beating the channel capacity limit for linear photonic superdense coding". Nature Physics. 4 (4): 282. arXiv: 1009.5128 . doi:10.1038/nphys919. S2CID   118624858.
  21. Foo, G.; Palacios, David M.; Swartzlander, Grover A. Jr. (2005). "Optical Vortex Coronagraph". Optics Letters. 30 (24): 3308–10. Bibcode:2005OptL...30.3308F. doi:10.1364/OL.30.003308. PMID   16389814.

Further reading