Anti-thrombin aptamers

Last updated
The complexes of (A) TBA-thrombin and (B) HD22-thrombin (PDB files 4DII and 4I7Y). The protein and aptamer were represented in the ribbon and ball&stick formats, respectively. Anti-thrombin aptamers TBA and HD22.tif
The complexes of (A) TBA-thrombin and (B) HD22-thrombin (PDB files 4DII and 4I7Y). The protein and aptamer were represented in the ribbon and ball&stick formats, respectively.

Anti-thrombin aptamers are G-quadruplex-bearing oligonucleotides, which recognizes the exosites of human thrombin. The first anti-thrombin aptamer, TBA, was generated through via SELEX (Systematic Evolution of Ligands by Exponential Enrichment) technology in 1992 by L.C. Bock, J.J. Toole and colleagues. [1] A second thrombin-binding aptamer, HD22, recognizes thrombin exosite II and was discovered in 1997 by NeXstar (now Gilead Sciences). [2] These two aptamers have high affinity and good specificity and have been widely studied and used for the development of aptamer-based therapeutics and diagnostics.

Contents

Aptamer TBA (the exosite I-binding aptamer)

The G-quadruplex structure adopted by TBA. (A) The crystallographic structure and (B) the schematic illustration of TBA (PDB file 4DII). Insert: the top layer of G-tetrad (The Hoogsteen-like hydrogen bonds are highlighted with green dashed lines). The structure of TBA.tif
The G-quadruplex structure adopted by TBA. (A) The crystallographic structure and (B) the schematic illustration of TBA (PDB file 4DII). Insert: the top layer of G-tetrad (The Hoogsteen-like hydrogen bonds are highlighted with green dashed lines).

The aptamer TBA (also known as G15D, HTQ, HD1, ARC183, GS522, BC-007, or Rovunaptabin) is a 15-mer single-stranded DNA with the sequence 5'-GGTTGGTGTGGTTGG-3'. [1] It interacts with the exosite I of human alpha-thrombin, which is the binding site of fibrinogen, so this aptamer acts as an anti-coagulant agent inhibiting the activation of fibrinogen as well as platelet aggregation. In addition, TBA shows good affinity and specificity against thrombin. The dissociation constant of TBA-thrombin has been reported in nano-molar range, and TBA does not interact with other plasma proteins or thrombin analogues (e.g., gamma-thrombin). [3] As a result, TBA has been used as a short-term anti-coagulant designed for the application in the coronary artery bypass graft surgery, and its optimized form (NU172) is now under the phase II of clinical trial by ARCA Biopharma (NCT00808964). [4] Also, due to its high affinity and specificity, a variety of sensors was coupled with TBA and developed for thrombosis diagnostics.

TBA structure

The interactions between TBA and ions. (A) TBA-potassium ion complex. Potassium ion fits the cavity between the two G-tetrad planes of TBA properly and coordinately interacts with eight O6 atoms in G-quadruplex. (insert: the whole structure of TBA-K+ complex) (B) TBA-sodium ion complex. Two alternative positions of sodium observed, and sodium can only interacts with four rather than eight oxygens. Ion preference of TBA structure.tif
The interactions between TBA and ions. (A) TBA-potassium ion complex. Potassium ion fits the cavity between the two G-tetrad planes of TBA properly and coordinately interacts with eight O6 atoms in G-quadruplex. (insert: the whole structure of TBA-K+ complex) (B) TBA-sodium ion complex. Two alternative positions of sodium observed, and sodium can only interacts with four rather than eight oxygens.

The tertiary structure of TBA is an anti-parallel G-quadruplex. This chair-like structure is folded through the stacking of two guanine (G)-tetrads, and four guanines interacts with one another through non Watson-Crick-like hydrogen bonds (more likely Hoogsteen-like hydrogen bonds). In the structure of TBA, G1, G6, G10 and G15 form the top layer of G-tetrad; G2, G5, G11 and G14 form the second layer. The first crystallographic images with 2.9 Å resolution (1HUT) was reported in 1993. It showed that the T7-G8-T9 loop and TT loops (T3-T4 and T12-T13) connected the narrow and the wide grooves, respectively. [5] However, since the improved NMR (1HAO) [6] and X-ray crystallographic images (4DIH; 4DII) [7] were provided, another topology with the TGT loop on the wide side and the TT loops on the narrow sites has been considered as a correct structure of TBA.

In addition to protein-selectivity, TBA also shows ion preference. A potassium ion helps TBA fold into a G-quadruplex structure, which results in a significant positive band at 295 nm and a negative band at 270 nm on its circular dichroism (CD) spectrum. Also, potassium ion improves the thermal stability of TBA. [8] The melting temperature of TBA's G-quadruplex (measuring the intensity change of the peak at 295 nm by CD) in the presence of sodium ion and potassium are 24 °C and 53 °C, respectively. [7] Compared with sodium, potassium ion fits perfectly to the cavity between two G-tetrad plane and is coordinately bound to four O6 atoms in each plane. This enhances the structural stability of TBA. In contrast, due to its small size, sodium ion can only interacts with four rather than eight oxygen atoms of two G-tetrad planes, and accordingly has two alternative position in the cavity. Thrombin shows similar influence as potassium ion. In the ion-deficient condition, thrombin helps TBA form into a stable G-quadruplex structure from a randomized coil, which results in conformational change. [8] Some groups use this property to develop aptamer-based thrombin sensors. For this purpose, TBA is usually mounted with an additional sequence with a FRET (Förster resonance energy transfer) pair to form a transient duplex structure. Once the TBA part interacts with thrombin, the conformational change would change the distance between the FRET pair and lead to a fluorescent output. This approach provides nano-molar sensitivity and is capable of sensing thrombin in the spiked serum. [9]

mTBA

A modified TBA with chain polarity inversion was reported in 1996, which is known as mTBA. A 5'-5' inversion was designed between T3 and T4 in mTBA sequence (3′-GGT-5′-5′TGGTGTGGTTGG-3′). This improves the thermal stability of G-quadruplex structure, and increases the melting temperature by 4 °C. In spite of this, the anticoagulant activity is affected and reduced by the inversion design. [10]

Interactions between TBA and thrombin

The interface between TBA and the exosite I of thrombin. (A) The interface. Involved protein residues and aptamer nucleotides are labeled with red and green, respectively. (B) The interaction between His71 and T3 (TBA) in the presence of potassium ion. (C) The positions of His 71 and T3 (TBA) in the presence of sodium ion. (D) The positions of His71 and T3 (mTBA). Dots represent the interactions between thrombin and aptamer. TBA-thrombin exosite I interface.tif
The interface between TBA and the exosite I of thrombin. (A) The interface. Involved protein residues and aptamer nucleotides are labeled with red and green, respectively. (B) The interaction between His71 and T3 (TBA) in the presence of potassium ion. (C) The positions of His 71 and T3 (TBA) in the presence of sodium ion. (D) The positions of His71 and T3 (mTBA). Dots represent the interactions between thrombin and aptamer.

TBA is bound to the exosite I of thrombin majorly via its two TT loops (T3, T4 and T12, T13) through polar and hydrophobic interactions. The residues His71, Arg75, Tyr76, Arg77, Asn78, Ile79, Tyr117 in the exosite I epitope are involved in the interaction with TBA. [7] Exosite 1, being a positively charged motif, engages in these interactions with the negatively charged backbone of HD1. [11] Importantly, T3 interacts with His71, which plays a critical role for fibrinogen recognition, [12] both through hydrogen bonding and hydrophobic interaction. However, in the presence of sodium ion, the hydrogen bonding between T3 and His71 is lost, and the intermolecular distance is longer than that in the potassium case. This reduces the affinity and functionality of TBA. Similar situation can be found in the case of mTBA. There are no interactions between mTBA and His71, which results in the reduction of anticoagulant activity. [13] The results of In silico calculations with molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method, suggest that the calculated binding energy (ΔG) of TBA to thrombin exosite I is slightly stronger is the presence of K+ (-66.73 kcal.mol-1) than in the case of Na+ (-60.29kcal.mol-1), however both states are likely to coexist. [14]

Therapeutic applications

It has been demonstrated that TBA can inhibit the thrombin-induced platelet aggregation and clot-bound thrombin activity. The IC50 of TBA for the inhibition of platelet aggregation (0.5 U/mL thrombin) is around 70 to 80 nmol/L, which is much lower than that of hirudin (~1.7 umol/L). Also, compared with heparin, TBA is more efficient in the inhibition of clot-bound thrombin. [15] Furthermore, TBA recognizes and inhibits prothrombin with similar affinity against alpha-thrombin. As a result, TBA prolongs the prothrombin time when interacting with prothrombin. [16] TBA entered the phase I clinical trial for coronary artery bypass graft surgery by Archemix and Nuvelo (now ARCA Biopharma) around 2005. Although it showed a rapid onset response with desired anticoagulation activity, the activity requires significantly high dosage of TBA. [17] Thus, the companies redesigned the sequence of TBA and developed a second-generation 26-mer DNA aptamer known as NU172, which is now under phase II clinical trial. [4]

Aptamer HD22 (the exosite II-binding aptamer)

HD22 structure and interbase interaction. (A) Overall structure of HD22. (B) Top G-tetrad plane (C) The Watson-Crick base pairs in the G-quadruplex motif. (D) G-fork interaction between G-quadruplex and duplex motifs HD22 structure.tif
HD22 structure and interbase interaction. (A) Overall structure of HD22. (B) Top G-tetrad plane (C) The Watson-Crick base pairs in the G-quadruplex motif. (D) G-fork interaction between G-quadruplex and duplex motifs
HD22-exosite II interaction. (A) Overall interface between HD22 and the exosite II. (B) The interface at the duplex motif. (C) The interface at the G-quadruplex motif. Dots represent the interactions. HD22-thrombin interaction.tif
HD22-exosite II interaction. (A) Overall interface between HD22 and the exosite II. (B) The interface at the duplex motif. (C) The interface at the G-quadruplex motif. Dots represent the interactions.

The aptamer HD22 (also known as HTDQ) is an optimized aptamer with 29 (5'-AGTCCGTGGTAGGGCAGGTTGGGGTGACT-3') or 27 (lacking the first and the last nucleotides of 29-mer form) nucleotides. [2] [18] This aptamer recognizes the exosite II of thrombin, which is involved in the activation of factor V and factor VIII and mediates the heparin binding. Therefore, HD22 inhibits the activations of factors V/VIII rather than that of fibrinogen. Despite that this aptamer only shows moderate effect on fibrinogen regulation, the affinity of this aptamer is slightly higher than TBA (KD~0.5 nM), and nowadays this aptamer is widely used for developments of aptamer sensor.

HD22 structure

Unlike TBA, HD22 holds a duplex/G-quadruplex mixed structure. The X-ray crystallographic image of HD22 (27mer form) with 2.4 Å resolution was reported recently (4I7Y). The nucleotides 1-3 and 25-27 with an additional C4-G23 form a duplex motif, and the sequence ranging from G5 to G20 folds into a G-quadruplex structure with four connection loops: T9-A10, T18-T19, G13-C14-A15 and a one-nucleotide loop (T6). In the core of G-quadruplex motif, two G-tetrad planes are formed by G5-G7-G12-G16 and G8-G11-G17-G20. The upper plane (G5-G7-G12-G16) is not a typical G-tetrad with the chain topology of anti-syn-anti-syn alternation. Instead, three guanines (G5, G7 and G16) adopt syn conformation, and only one guanine (G12) adopts anti conformation. Additionally, the one-nucleotide loop inserted between G5 and G7. These make G-tetrad formed not through a typically cyclic pattern. This unusual G-tetrad plan is formed by four hydrogen bonds: one on N2:N7(G5-G16), two on O6:N7(G12-G7; G16-G12) and one on O6:N2 (G7-G5). Some other interactions could be found in the G-quadruplex motif: two Watson-Crick base pairs (T6-A15 and A10-T19) and a G-fork (G5-G21). Importantly, because of the interaction between G5 and G21, there is a 90-degree turn between the G-qudruplex and duplex motifs. [19]

Interactions between HD22 and thrombin

The nucleotides G23, T24, G25, A26, C27 in the duplex and T9, T18, T19, G20 in G-quadruplex contribute to the interaction with the exosite II of thrombin. On the protein side, the residues Tyr89, His91, Pro92, Arg93, Tyr94, Asn95, Trp96, Arg97, Arg126, Leu130, Arg165, Lys169, His230, Arg233, Trp237, Val241 and Phe245 in thrombin are involved in the interaction. Since the exosite II is a positively charged motif, it creates many ion pairs with the HD22 backbone especially in the duplex region. Hydrophobic interactions are mainly observed in the G-quadruplex region (T9, T18 and T10), and this stabilizes the complex formation. Moreover, Interacting with thrombin improves the thermal stability of HD22 structure, and results in the increase of melting temperature (from 36 to 48 °C). [19] Calculated binding energy of HD22 to thrombin exosite II is -88.37 -kcal.mol-1. [14]

Avidity effect of TBA and HD22

Similar to antibody, aptamers TBA and HD22 show avidity effect against thrombin after dimerization. When TBA and HD22 are conjugated with an optimal linker [20] [21] or co-printed on the sensor surface with an optimal density, [22] the affinity against thrombin could be significantly enhanced by 100 to 10,000 fold. Furthermore, the dimerization improves the anticoagulant activity as well. The TBA-HD22 construct (linked with 16-mer polyA) shows significant improvement both in the assay of activated partial thromboplastin time, clotting time and thrombin-induced platelet-aggregation. TBA-HD22 construct shows comparable efficacy compared with bivalirudin, but much more potent than argatroban. In addition, the TBA-HD22 avidity can be examined by ecarin clotting time. Ecarin activates prothrombin and accordingly produces meizothrombin. The exosite II is not accessible in meizothrombin, so thus the HD22 part cannot interact with meizothrombin directly. As a result, TBA-HD22 construct cannot improve the ecarin clotting time, which further demonstrates the improvement of aptamer functionality is due to TBA-HD22 avidity. [23]

Related Research Articles

<span class="mw-page-title-main">Coagulation</span> Process of formation of blood clots

Coagulation, also known as clotting, is the process by which blood changes from a liquid to a gel, forming a blood clot. It results in hemostasis, the cessation of blood loss from a damaged vessel, followed by repair. The process of coagulation involves activation, adhesion and aggregation of platelets, as well as deposition and maturation of fibrin.

<span class="mw-page-title-main">Fibrinogen</span> Soluble protein complex in blood plasma and involved in clot formation

Fibrinogen is a glycoprotein complex, produced in the liver, that circulates in the blood of all vertebrates. During tissue and vascular injury, it is converted enzymatically by thrombin to fibrin and then to a fibrin-based blood clot. Fibrin clots function primarily to occlude blood vessels to stop bleeding. Fibrin also binds and reduces the activity of thrombin. This activity, sometimes referred to as antithrombin I, limits clotting. Fibrin also mediates blood platelet and endothelial cell spreading, tissue fibroblast proliferation, capillary tube formation, and angiogenesis and thereby promotes revascularization and wound healing.

<span class="mw-page-title-main">Thrombin</span> Enzyme involved in blood coagulation in humans

Prothrombin is encoded in the human by the F2 gene. It is proteolytically cleaved during the clotting process by the prothrombinase enzyme complex to form thrombin.

In a chain-like biological molecule, such as a protein or nucleic acid, a structural motif is a common three-dimensional structure that appears in a variety of different, evolutionarily unrelated molecules. A structural motif does not have to be associated with a sequence motif; it can be represented by different and completely unrelated sequences in different proteins or RNA.

DnaG is a bacterial DNA primase and is encoded by the dnaG gene. The enzyme DnaG, and any other DNA primase, synthesizes short strands of RNA known as oligonucleotides during DNA replication. These oligonucleotides are known as primers because they act as a starting point for DNA synthesis. DnaG catalyzes the synthesis of oligonucleotides that are 10 to 60 nucleotides long, however most of the oligonucleotides synthesized are 11 nucleotides. These RNA oligonucleotides serve as primers, or starting points, for DNA synthesis by bacterial DNA polymerase III. DnaG is important in bacterial DNA replication because DNA polymerase cannot initiate the synthesis of a DNA strand, but can only add nucleotides to a preexisting strand. DnaG synthesizes a single RNA primer at the origin of replication. This primer serves to prime leading strand DNA synthesis. For the other parental strand, the lagging strand, DnaG synthesizes an RNA primer every few kilobases (kb). These primers serve as substrates for the synthesis of Okazaki fragments.

<span class="mw-page-title-main">Antithrombin</span> Mammalian protein found in Homo sapiens

Antithrombin (AT) is a small glycoprotein that inactivates several enzymes of the coagulation system. It is a 464-amino-acid protein produced by the liver. It contains three disulfide bonds and a total of four possible glycosylation sites. α-Antithrombin is the dominant form of antithrombin found in blood plasma and has an oligosaccharide occupying each of its four glycosylation sites. A single glycosylation site remains consistently un-occupied in the minor form of antithrombin, β-antithrombin. Its activity is increased manyfold by the anticoagulant drug heparin, which enhances the binding of antithrombin to factor IIa (thrombin) and factor Xa.

<span class="mw-page-title-main">Factor X</span> Mammalian protein found in Homo sapiens

Coagulation factor X, or Stuart factor, is an enzyme of the coagulation cascade, encoded in humans by F10 gene. It is a serine endopeptidase. Factor X is synthesized in the liver and requires vitamin K for its synthesis.

<span class="mw-page-title-main">Aptamer</span> Oligonucleotide or peptide molecules that bind specific targets

Aptamers are short sequences of artificial DNA, RNA, XNA, or peptide that bind a specific target molecule, or family of target molecules. They exhibit a range of affinities, with variable levels of off-target binding and are sometimes classified as chemical antibodies. Aptamers and antibodies can be used in many of the same applications, but the nucleic acid-based structure of aptamers, which are mostly oligonucleotides, is very different from the amino acid-based structure of antibodies, which are proteins. This difference can make aptamers a better choice than antibodies for some purposes.

<span class="mw-page-title-main">Hirudin</span> Chemical compound in leeches

Hirudin is a naturally occurring peptide in the salivary glands of blood-sucking leeches that has a blood anticoagulant property. This is essential for the leeches' habit of feeding on blood, since it keeps a host's blood flowing after the worm's initial puncture of the skin.

The prothrombinase enzyme complex consists of factor Xa (a serine protease) and factor Va (a protein cofactor). The complex assembles on negatively charged phospholipid membranes in the presence of calcium ions. The prothrombinase complex catalyzes the conversion of prothrombin (factor II), an inactive zymogen, to thrombin (factor IIa), an active serine protease. The activation of thrombin is a critical reaction in the coagulation cascade, which functions to regulate hemostasis in the body. To produce thrombin, the prothrombinase complex cleaves two peptide bonds in prothrombin, one after Arg271 and the other after Arg320. Although it has been shown that factor Xa can activate prothrombin when unassociated with the prothrombinase complex, the rate of thrombin formation is severely decreased under such circumstances. The prothrombinase complex can catalyze the activation of prothrombin at a rate 3 x 105-fold faster than can factor Xa alone. Thus, the prothrombinase complex is required for the efficient production of activated thrombin and also for adequate hemostasis.

<span class="mw-page-title-main">G-quadruplex</span> Structure in molecular biology

In molecular biology, G-quadruplex secondary structures (G4) are formed in nucleic acids by sequences that are rich in guanine. They are helical in shape and contain guanine tetrads that can form from one, two or four strands. The unimolecular forms often occur naturally near the ends of the chromosomes, better known as the telomeric regions, and in transcriptional regulatory regions of multiple genes, both in microbes and across vertebrates including oncogenes in humans. Four guanine bases can associate through Hoogsteen hydrogen bonding to form a square planar structure called a guanine tetrad, and two or more guanine tetrads can stack on top of each other to form a G-quadruplex.

Direct thrombin inhibitors (DTIs) are a class of medication that act as anticoagulants by directly inhibiting the enzyme thrombin. Some are in clinical use, while others are undergoing clinical development. Several members of the class are expected to replace heparin and warfarin in various clinical scenarios.

<span class="mw-page-title-main">Systematic evolution of ligands by exponential enrichment</span> Technique for producing oligonucleotides that specifically bind to a target

Systematic evolution of ligands by exponential enrichment (SELEX), also referred to as in vitro selection or in vitro evolution, is a combinatorial chemistry technique in molecular biology for producing oligonucleotides of either single-stranded DNA or RNA that specifically bind to a target ligand or ligands. These single-stranded DNA or RNA are commonly referred to as aptamers. Although SELEX has emerged as the most commonly used name for the procedure, some researchers have referred to it as SAAB and CASTing SELEX was first introduced in 1990. In 2015, a special issue was published in the Journal of Molecular Evolution in the honor of quarter century of the discovery of SELEX.

<span class="mw-page-title-main">Batroxobin</span>

Batroxobin, also known as reptilase, is a snake venom enzyme with Venombin A activity produced by Bothrops atrox and Bothrops moojeni, venomous species of pit viper found east of the Andes in South America. It is a hemotoxin which acts as a serine protease similarly to thrombin, and has been the subject of many medical studies as a replacement of thrombin. Different enzymes, isolated from different species of Bothrops, have been called batroxobin, but unless stated otherwise, this article covers the batroxobin produced by B. moojeni, as this is the most studied variety.

<span class="mw-page-title-main">Nucleic acid analogue</span> Compound analogous to naturally occurring RNA and DNA

Nucleic acid analogues are compounds which are analogous to naturally occurring RNA and DNA, used in medicine and in molecular biology research. Nucleic acids are chains of nucleotides, which are composed of three parts: a phosphate backbone, a pentose sugar, either ribose or deoxyribose, and one of four nucleobases. An analogue may have any of these altered. Typically the analogue nucleobases confer, among other things, different base pairing and base stacking properties. Examples include universal bases, which can pair with all four canonical bases, and phosphate-sugar backbone analogues such as PNA, which affect the properties of the chain . Nucleic acid analogues are also called xeno nucleic acids and represent one of the main pillars of xenobiology, the design of new-to-nature forms of life based on alternative biochemistries.

An exosite is a secondary binding site, remote from the active site, on an enzyme or other protein.

Cerastocytin is a thrombin-like serine protease in snake venom.

<span class="mw-page-title-main">Nucleic acid tertiary structure</span> Three-dimensional shape of a nucleic acid polymer

Nucleic acid tertiary structure is the three-dimensional shape of a nucleic acid polymer. RNA and DNA molecules are capable of diverse functions ranging from molecular recognition to catalysis. Such functions require a precise three-dimensional structure. While such structures are diverse and seemingly complex, they are composed of recurring, easily recognizable tertiary structural motifs that serve as molecular building blocks. Some of the most common motifs for RNA and DNA tertiary structure are described below, but this information is based on a limited number of solved structures. Many more tertiary structural motifs will be revealed as new RNA and DNA molecules are structurally characterized.

Twisted intercalating nucleic acid (TINA) is a nucleic acid molecule that, when added to triplex-forming oligonucleotides (TFOs), stabilizes Hoogsteen triplex DNA formation from double-stranded DNA (dsDNA) and TFOs. Its ability to twist around a triple bond increases ease of intercalation within double stranded DNA in order to form triplex DNA. Certain configurations have been shown to stabilize Watson-Crick antiparallel duplex DNA. TINA-DNA primers have been shown to increase the specificity of binding in PCR. The use of TINA insertions in G-quadruplexes has also been shown to enhance anti-HIV-1 activity. TINA stabilized PT demonstrates improved sensitivity and specificity of DNA based clinical diagnostic assays.

Direct thrombin inhibitors (DTIs) are a class of anticoagulant drugs that can be used to prevent and treat embolisms and blood clots caused by various diseases. They inhibit thrombin, a serine protease which affects the coagulation cascade in many ways. DTIs have undergone rapid development since the 90's. With technological advances in genetic engineering the production of recombinant hirudin was made possible which opened the door to this new group of drugs. Before the use of DTIs the therapy and prophylaxis for anticoagulation had stayed the same for over 50 years with the use of heparin derivatives and warfarin which have some well known disadvantages. DTIs are still under development, but the research focus has shifted towards factor Xa inhibitors, or even dual thrombin and fXa inhibitors that have a broader mechanism of action by both inhibiting factor IIa (thrombin) and Xa. A recent review of patents and literature on thrombin inhibitors has demonstrated that the development of allosteric and multi-mechanism inhibitors might lead the way to a safer anticoagulant.

References

  1. 1 2 Bock, Louis C.; Griffin, Linda C.; Latham, John A.; Vermaas, Eric H.; Toole, John J. (1992). "Selection of single-stranded DNA molecules that bind and inhibit human thrombin". Nature. 355 (6360): 564–566. Bibcode:1992Natur.355..564B. doi:10.1038/355564a0. PMID   1741036. S2CID   4349607.
  2. 1 2 Tasset, Diane M.; Kubik, Mark F.; Steiner, Walter (1997). "Oligonucleotide inhibitors of human thrombin that bind distinct epitopes". Journal of Molecular Biology. 272 (5): 688–698. doi:10.1006/jmbi.1997.1275. PMID   9368651.
  3. Li, Jianwei J.; Fang, Xiaohong; Tan, Weihong (2002). "Molecular Aptamer Beacons for Real-Time Protein Recognition". Biochemical and Biophysical Research Communications. 292 (1): 31–40. doi:10.1006/bbrc.2002.6581. PMID   11890667.
  4. 1 2 "Phase 2 Study of NU172 Anticoagulation in Patients Undergoing Coronary Artery Bypass Graft Surgery OFF-Pump". Clinical Trials.gov. 8 June 2011.
  5. Padmanabhan, K.; Padmanabhan, K. P.; Ferrara, J. D.; Sadler, J. E.; Tulinsky, A. (1993). "The structure of alpha-thrombin inhibited by a 15-mer single-stranded DNA aptamer". The Journal of Biological Chemistry. 268 (24): 17651–17654. doi:10.2210/pdb1hut/pdb. PMID   8102368.
  6. Padmanabhan, K.; Tulinsky, A. (1996). "An Ambiguous Structure of a DNA 15-mer Thrombin Complex". Acta Crystallographica Section D. 52 (2): 272–282. doi:10.1107/S0907444995013977. PMID   15299700.
  7. 1 2 3 Russo Krauss, Irene; Merlino, Antonello; Randazzo, Antonio; Novellino, Ettore; Mazzarella, Lelio; Sica, Filomena (2012). "High-resolution structures of two complexes between thrombin and thrombin-binding aptamer shed light on the role of cations in the aptamer inhibitory activity". Nucleic Acids Research. 40 (16): 8119–8128. doi:10.1093/nar/gks512. PMC   3439905 . PMID   22669903.
  8. 1 2 Nagatoishi, Satoru; Tanaka, Yoshikazu; Tsumoto, Kouhei (2007). "Circular dichroism spectra demonstrate formation of the thrombin-binding DNA aptamer G-quadruplex under stabilizing-cation-deficient conditions". Biochemical and Biophysical Research Communications. 352 (3): 812–817. doi:10.1016/j.bbrc.2006.11.088. PMID   17150180.
  9. Chi, Chun-Wei; Lao, Yeh-Hsing; Li, Yi-Shan; Chen, Lin-Chi (2011). "A quantum dot-aptamer beacon using a DNA intercalating dye as the FRET reporter: Application to label-free thrombin detection". Biosensors and Bioelectronics. 26 (7): 3346–3352. doi:10.1016/j.bios.2011.01.015. PMID   21306887.
  10. Martino, Luigi; Virno, Ada; Randazzo, Antonio; Virgilio, Antonella; Esposito, Veronica; Giancola, Concetta; Bucci, Mariarosaria; Cirino, Giuseppe; Mayol, Luciano (2006). "A new modified thrombin binding aptamer containing a 5′–5′ inversion of polarity site". Nucleic Acids Research. 34 (22): 6653–6662. doi:10.1093/nar/gkl915. PMC   1751544 . PMID   17145716.
  11. Rangnekar, Abhijit; Nash, Jessica A.; Goodfred, Bethany; Yingling, Yaroslava G.; Labean, Thomas H. (2016). "Design of Potent and Controllable Anticoagulants Using DNA Aptamers and Nanostructures". Molecules. 21 (2): 202. doi: 10.3390/molecules21020202 . PMC   6273181 . PMID   26861277.
  12. Tsiang, M.; Jain, A. K.; Dunn, K. E.; Rojas, M. E.; Leung, L. L.; Gibbs, C. S. (1995). "Functional mapping of the surface residues of human thrombin". The Journal of Biological Chemistry. 270 (28): 16854–16863. doi: 10.1074/jbc.270.28.16854 . PMID   7622501.
  13. Russo Krauss, Irene; Merlino, Antonello; Giancola, Concetta; Randazzo, Antonio; Mazzarella, Lelio; Sica, Filomena (2011). "Thrombin–aptamer recognition: A revealed ambiguity". Nucleic Acids Research. 39 (17): 7858–7867. doi:10.1093/nar/gkr522. PMC   3177225 . PMID   21715374.
  14. 1 2 Trapaidze, A.; Bancaud, A.; Brut, M. (2015). "Binding modes of thrombin binding aptamers investigated by simulations and experiments" (PDF). Applied Physics Letters. 106 (4): 043702. Bibcode:2015ApPhL.106d3702T. doi:10.1063/1.4906594.
  15. Li, W. X.; Kaplan, A. V.; Grant, G. W.; Toole, J. J.; Leung, L. L. (1994). "A novel nucleotide-based thrombin inhibitor inhibits clot-bound thrombin and reduces arterial platelet thrombus formation". Blood. 83 (3): 677–682. doi: 10.1182/blood.V83.3.677.677 . PMID   8298130. S2CID   29862655.
  16. Kretz, Colin A.; Stafford, Alan R.; Fredenburgh, James C.; Weitz, Jeffrey I. (2006). "HD1, a Thrombin-directed Aptamer, Binds Exosite 1 on Prothrombin with High Affinity and Inhibits Its Activation by Prothrombinase". Journal of Biological Chemistry. 281 (49): 37477–37485. doi: 10.1074/jbc.M607359200 . PMID   17046833.
  17. Schwienhorst, A. (2006). "Direct thrombin inhibitors – a survey of recent developments". Cellular and Molecular Life Sciences. 63 (23): 2773–2791. doi:10.1007/s00018-006-6219-z. PMID   17103113. S2CID   45046164.
  18. Kotkowiak, Weronika; Pasternak, Anna (2021). "Beyond G-Quadruplexes—The Effect of Junction with Additional Structural Motifs on Aptamers Properties". International Journal of Molecular Sciences. 22 (18): 9948. doi: 10.3390/ijms22189948 . PMC   8466185 . PMID   34576112.
  19. 1 2 Russo Krauss, Irene; Pica, Andrea; Merlino, Antonello; Mazzarella, Lelio; Sica, Filomena (2013). "Duplex–quadruplex motifs in a peculiar structural organization cooperatively contribute to thrombin binding of a DNA aptamer". Acta Crystallographica Section D. 69 (12): 2403–2411. doi:10.1107/S0907444913022269. PMID   24311581.
  20. Trapaidze, A.; et al. (2015). "Thrombin detection in murine plasma using engineered fluorescence resonance energy transfer aptadimers". Applied Physics Letters. 107 (23): 233701. Bibcode:2015ApPhL.107w3701T. doi: 10.1063/1.4937351 . ISSN   0003-6951.
  21. Hasegawa, Hijiri; Taira, Ken-ichi; Sode, Koji; Ikebukuro, Kazunori (19 February 2008). "Improvement of Aptamer Affinity by Dimerization". Sensors. 8 (2): 1090–1098. Bibcode:2008Senso...8.1090H. doi: 10.3390/s8021090 . PMC   3927496 . PMID   27879754.
  22. Lao, Yeh-Hsing; Peck, Konan; Chen, Lin-Chi (2009). "Enhancement of Aptamer Microarray Sensitivity through Spacer Optimization and Avidity Effect" (PDF). Analytical Chemistry. 81 (5): 1747–1754. doi:10.1021/ac801285a. PMID   19193102.
  23. Müller, J.; Freitag, D.; Mayer, G.; Pötzsch, B. (2008). "Anticoagulant characteristics of HD1-22, a bivalent aptamer that specifically inhibits thrombin and prothrombinase". Journal of Thrombosis and Haemostasis. 6 (12): 2105–2112. doi: 10.1111/j.1538-7836.2008.03162.x . PMID   18826387. S2CID   24628635.