BC-007

Last updated

BC-007
INN: Rovunaptabin
BC-007.svg
Clinical data
Other names
  • ARC183, ARC-183
  • BC007, BC-007
  • GS522, GS-522
  • G15D
  • HD1
  • HTQ
  • ODN1, ODN-1
  • TBA
  • d(GGTTGGTGTGGTTGG)
  • 5'-GGTTGGTGTGGTTGG-3'
Routes of
administration
Infusion
Pharmacokinetic data
Elimination half-life 2.9-11 min
Identifiers
  • [(2R,3S,5R)-5-(2-amino-6-oxo-1H-purin-9-yl)-2-[[[(2R,3S,5R)-2-[[[(2R,3S,5R)-2-[[[(2R,3S,5R)-5-(2-amino-6-oxo-1H-purin-9-yl)-2-[[[(2R,3S,5R)-5-(2-amino-6-oxo-1H-purin-9-yl)-2-[[[(2R,3S,5R)-2-[[[(2R,3S,5R)-5-(2-amino-6-oxo-1H-purin-9-yl)-2-[[[(2R,3S,5R)-2-[[[(2R,3S,5R)-5-(2-amino-6-oxo-1H-purin-9-yl)-2-[[[(2R,3S,5R)-5-(2-amino-6-oxo-1H-purin-9-yl)-2-[[[(2R,3S,5R)-2-[[[(2R,3S,5R)-2-[[[(2R,3S,5R)-5-(2-amino-6-oxo-1H-purin-9-yl)-2-[[[(2R,3S,5R)-5-(2-amino-6-oxo-1H-purin-9-yl)-2-(hydroxymethyl)oxolan-3-yl]oxy-hydroxyphosphoryl]oxymethyl]oxolan-3-yl]oxy-hydroxyphosphoryl]oxymethyl]-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-3-yl]oxy-hydroxyphosphoryl]oxymethyl]-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-3-yl]oxy-hydroxyphosphoryl]oxymethyl]oxolan-3-yl]oxy-hydroxyphosphoryl]oxymethyl]oxolan-3-yl]oxy-hydroxyphosphoryl]oxymethyl]-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-3-yl]oxy-hydroxyphosphoryl]oxymethyl]oxolan-3-yl]oxy-hydroxyphosphoryl]oxymethyl]-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-3-yl]oxy-hydroxyphosphoryl]oxymethyl]oxolan-3-yl]oxy-hydroxyphosphoryl]oxymethyl]oxolan-3-yl]oxy-hydroxyphosphoryl]oxymethyl]-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-3-yl]oxy-hydroxyphosphoryl]oxymethyl]-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-3-yl]oxy-hydroxyphosphoryl]oxymethyl]oxolan-3-yl] [(2R,3S,5R)-5-(2-amino-6-oxo-1H-purin-9-yl)-3-phosphonooxyoxolan-2-yl]methyl hydrogen phosphate
CAS Number
PubChem CID
PubChemSID
DrugBank
ChEBI
Chemical and physical data
Formula C150H188N57O97P15
Molar mass 4806.062 g·mol−1
3D model (JSmol)
  • OC[C@H]1O[C@@H](N2C=3N=C(NC(C3N=C2)=O)N)C[C@@H]1OP(OC[C@H]4O[C@@H](N5C=6N=C(NC(C6N=C5)=O)N)C[C@@H]4OP(OC[C@H]7O[C@@H](N8C=C(C(NC8=O)=O)C)C[C@@H]7OP(OC[C@H]9O[C@@H](N%10C=C(C(NC%10=O)=O)C)C[C@@H]9OP(OC[C@H]%11O[C@@H](N%12C=%13N=C(NC(C%13N=C%12)=O)N)C[C@@H]%11OP(OC[C@H]%14O[C@@H](N%15C=%16N=C(NC(C%16N=C%15)=O)N)C[C@@H]%14OP(OC[C@H]%17O[C@@H](N%18C=C(C(NC%18=O)=O)C)C[C@@H]%17OP(OC[C@H]%19O[C@@H](N%20C=%21N=C(NC(C%21N=C%20)=O)N)C[C@@H]%19OP(OC[C@H]%22O[C@@H](N%23C=C(C(NC%23=O)=O)C)C[C@@H]%22OP(OC[C@H]%24O[C@@H](N%25C=%26N=C(NC(C%26N=C%25)=O)N)C[C@@H]%24OP(OC[C@H]%27O[C@@H](N%28C=%29N=C(NC(C%29N=C%28)=O)N)C[C@@H]%27OP(OC[C@H]%30O[C@@H](N%31C=C(C(NC%31=O)=O)C)C[C@@H]%30OP(OC[C@H]%32O[C@@H](N%33C=C(C(NC%33=O)=O)C)C[C@@H]%32OP(OC[C@H]%34O[C@@H](N%35C=%36N=C(NC(C%36N=C%35)=O)N)C[C@@H]%34OP(OC[C@H]%37O[C@@H](N%38C=%39N=C(NC(C%39N=C%38)=O)N)C[C@@H]%37OP(O)(=O)O)(=O)O)(=O)O)(=O)O)(=O)O)(=O)O)(=O)O)(=O)O)(=O)O)(=O)O)(=O)O)(=O)O)(=O)O)(=O)O)(=O)O
  • InChI=InChI=1S/C150H188N57O97P15/c1-52-22-193(145(224)187-121(52)209)88-9-60(77(278-88)32-265-314(249,250)299-66-15-96(201-45-162-105-114(201)171-138(153)180-129(105)217)283-81(66)36-262-306(233,234)291-58-7-94(275-73(58)28-208)199-43-160-103-112(199)169-136(151)178-127(103)215)292-308(237,238)264-31-76-63(12-91(277-76)196-25-55(4)124(212)190-148(196)227)295-311(243,244)271-39-84-71(20-101(286-84)206-50-167-110-119(206)176-143(158)185-134(110)222)303-318(257,258)274-42-87-70(19-100(289-87)205-49-166-109-118(205)175-142(157)184-133(109)221)302-317(255,256)268-35-80-64(13-92(281-80)197-26-56(5)125(213)191-149(197)228)296-312(245,246)270-38-83-68(17-98(285-83)203-47-164-107-116(203)173-140(155)182-131(107)219)300-315(251,252)267-34-79-65(14-93(280-79)198-27-57(6)126(214)192-150(198)229)297-313(247,248)272-40-85-72(21-102(287-85)207-51-168-111-120(207)177-144(159)186-135(111)223)304-319(259,260)273-41-86-69(18-99(288-86)204-48-165-108-117(204)174-141(156)183-132(108)220)301-316(253,254)266-33-78-61(10-89(279-78)194-23-53(2)122(210)188-146(194)225)293-309(239,240)263-30-75-62(11-90(276-75)195-24-54(3)123(211)189-147(195)226)294-310(241,242)269-37-82-67(16-97(284-82)202-46-163-106-115(202)172-139(154)181-130(106)218)298-307(235,236)261-29-74-59(290-305(230,231)232)8-95(282-74)200-44-161-104-113(200)170-137(152)179-128(104)216/h22-27,43-51,58-102,208H,7-21,28-42H2,1-6H3,(H,233,234)(H,235,236)(H,237,238)(H,239,240)(H,241,242)(H,243,244)(H,245,246)(H,247,248)(H,249,250)(H,251,252)(H,253,254)(H,255,256)(H,257,258)(H,259,260)(H,187,209,224)(H,188,210,225)(H,189,211,226)(H,190,212,227)(H,191,213,228)(H,192,214,229)(H2,230,231,232)(H3,151,169,178,215)(H3,152,170,179,216)(H3,153,171,180,217)(H3,154,172,181,218)(H3,155,173,182,219)(H3,156,174,183,220)(H3,157,175,184,221)(H3,158,176,185,222)(H3,159,177,186,223)/t58-,59-,60-,61-,62-,63-,64-,65-,66-,67-,68-,69-,70-,71-,72-,73+,74+,75+,76+,77+,78+,79+,80+,81+,82+,83+,84+,85+,86+,87+,88+,89+,90+,91+,92+,93+,94+,95+,96+,97+,98+,99+,100+,101+,102+/m0/s1 "CHEBI:140487 - 5'-GGTTGGTGTGGTTGG-3'". ChEBI. European Bioinformatics Institute. 2018-04-11. Retrieved 2023-05-31.
  • Key:LADFAOKPINUFBB-TWPNXFTKSA-N

BC-007, whose international nonproprietary name is Rovunaptabin, [1] is an oligonucleotide aptamer, a synthetic DNA compound designed to bind other chemicals. [2] BC-007 is in early-stage clinical trials as a lead compound intended for the potential treatment of heart failure or long COVID.

Contents

History

Since the 1990s, the binding of G protein coupled receptors to autoantibodies (GPCR-AABs) was investigated as a possible factor in the pathology of several diseases, including heart disease. [3] [4] In parallel, treatment strategies to remove GPCR-AABs were investigated, initially using proteins or peptides to bind the antibodies. [5] [6]

In 2012, scientists from the Max Delbrück Center and the Charité Heart Center obtained a patent in the United States for using aptamers as a therapy or diagnosis of autoimmune diseases. [7] Beginning in 2013, the research group focused on the treatment of dilated cardiomyopathy in people positive for beta-1 adrenergic receptor autoantibodies. [8] [9] In 2015–16, scientists reported that two aptamers might bind and inhibit GPCR-AABs. [10] [11]

The biotechnology company Berlin Cures pursued the development of the aptamer with the nucleotide sequence GGT TGG TGT GGT TGG under the codename BC-007 for the inhibition of autoantibodies in cardiomyopathy. [12]

Properties

BC-007 is a 15-nucleotide single-stranded DNA molecule consisting of nine unmodified deoxy-guanosines and six corresponding deoxythymidines with the sequence 5'-GGT TGG TGT GGT TGG-3'. [2] Its three-dimensional structure allows it to wrap around the target structure of G-protein-coupled receptor autoantibodies and neutralize their activity. [2]

BC-007 is synthetic, enabling it to be produced in high volumes quickly. [13] It is stable and suited for long-term storage. [13] It has shown no side effects in early clinical studies, and does not trigger immunological responses. [2] [13] As it is water soluble, it can be formulated as inhalation or as nasal spray. [13] In some human studies, it was given by intravenous infusion, displaying an in vivo half-life in blood of about 4 minutes. [2]

Related Research Articles

<span class="mw-page-title-main">G protein-coupled receptor</span> Class of cell surface receptors coupled to G-protein-associated intracellular signaling

G protein-coupled receptors (GPCRs), also known as seven-(pass)-transmembrane domain receptors, 7TM receptors, heptahelical receptors, serpentine receptors, and G protein-linked receptors (GPLR), form a large group of evolutionarily related proteins that are cell surface receptors that detect molecules outside the cell and activate cellular responses. They are coupled with G proteins. They pass through the cell membrane seven times in the form of six loops of amino acid residues, which is why they are sometimes referred to as seven-transmembrane receptors. Ligands can bind either to the extracellular N-terminus and loops or to the binding site within transmembrane helices. They are all activated by agonists, although a spontaneous auto-activation of an empty receptor has also been observed.

<span class="mw-page-title-main">Adrenergic receptor</span> Class of G protein-coupled receptors

The adrenergic receptors or adrenoceptors are a class of G protein-coupled receptors that are targets of many catecholamines like norepinephrine (noradrenaline) and epinephrine (adrenaline) produced by the body, but also many medications like beta blockers, beta-2 (β2) antagonists and alpha-2 (α2) agonists, which are used to treat high blood pressure and asthma, for example.

<span class="mw-page-title-main">Dilated cardiomyopathy</span> Condition involving an enlarged, ineffective heart

Dilated cardiomyopathy (DCM) is a condition in which the heart becomes enlarged and cannot pump blood effectively. Symptoms vary from none to feeling tired, leg swelling, and shortness of breath. It may also result in chest pain or fainting. Complications can include heart failure, heart valve disease, or an irregular heartbeat.

Beta<sub>2</sub>-adrenergic agonist Compounds that bind to and activate adrenergic beta-2 receptors

Beta2-adrenergic agonists, also known as adrenergic β2 receptor agonists, are a class of drugs that act on the β2 adrenergic receptor. Like other β adrenergic agonists, they cause smooth muscle relaxation. β2 adrenergic agonists' effects on smooth muscle cause dilation of bronchial passages, vasodilation in muscle and liver, relaxation of uterine muscle, and release of insulin. They are primarily used to treat asthma and other pulmonary disorders. Bronchodilators are considered an important treatment regime for chronic obstructive pulmonary disease (COPD) and are usually used in combination with short acting medications and long acting medications in a combined inhaler.

alpha-1 (α1) adrenergic receptors are G protein-coupled receptors (GPCRs) associated with the Gq heterotrimeric G protein. α1-adrenergic receptors are subdivided into three highly homologous subtypes, i.e., α1A-, α1B-, and α1D-adrenergic receptor subtypes. There is no α1C receptor. At one time, there was a subtype known as α1C, but it was found to be identical to the previously discovered α1A receptor subtype. To avoid confusion, naming was continued with the letter D. Catecholamines like norepinephrine (noradrenaline) and epinephrine (adrenaline) signal through the α1-adrenergic receptors in the central and peripheral nervous systems. The crystal structure of the α1B-adrenergic receptor subtype has been determined in complex with the inverse agonist (+)-cyclazosin.

<span class="mw-page-title-main">Beta-1 adrenergic receptor</span> Protein-coding gene in the species Homo sapiens

The beta-1 adrenergic receptor, also known as ADRB1, can refer to either the protein-encoding gene or one of the four adrenergic receptors. It is a G-protein coupled receptor associated with the Gs heterotrimeric G-protein that is expressed predominantly in cardiac tissue. In addition to cardiac tissue, beta-1 adrenergic receptors are also expressed in the cerebral cortex.

<span class="mw-page-title-main">Beta-2 adrenergic receptor</span> Mammalian protein found in humans

The beta-2 adrenergic receptor, also known as ADRB2, is a cell membrane-spanning beta-adrenergic receptor that binds epinephrine (adrenaline), a hormone and neurotransmitter whose signaling, via adenylate cyclase stimulation through trimeric Gs proteins, increases cAMP, and, via downstream L-type calcium channel interaction, mediates physiologic responses such as smooth muscle relaxation and bronchodilation.

<span class="mw-page-title-main">Arrestin</span> Family of proteins

Arrestins are a small family of proteins important for regulating signal transduction at G protein-coupled receptors. Arrestins were first discovered as a part of a conserved two-step mechanism for regulating the activity of G protein-coupled receptors (GPCRs) in the visual rhodopsin system by Hermann Kühn, Scott Hall, and Ursula Wilden and in the β-adrenergic system by Martin J. Lohse and co-workers.

<span class="mw-page-title-main">G protein-coupled receptor kinase</span> Family of protein kinases

G protein-coupled receptor kinases are a family of protein kinases within the AGC group of kinases. Like all AGC kinases, GRKs use ATP to add phosphate to Serine and Threonine residues in specific locations of target proteins. In particular, GRKs phosphorylate intracellular domains of G protein-coupled receptors (GPCRs). GRKs function in tandem with arrestin proteins to regulate the sensitivity of GPCRs for stimulating downstream heterotrimeric G protein and G protein-independent signaling pathways.

<span class="mw-page-title-main">G protein-coupled receptor kinase 2</span> Enzyme

G-protein-coupled receptor kinase 2 (GRK2) is an enzyme that in humans is encoded by the ADRBK1 gene. GRK2 was initially called Beta-adrenergic receptor kinase, and is a member of the G protein-coupled receptor kinase subfamily of the Ser/Thr protein kinases that is most highly similar to GRK3(βARK2).

<span class="mw-page-title-main">RGS2</span> Protein-coding gene in the species Homo sapiens

Regulator of G-protein signaling 2 is a protein that in humans is encoded by the RGS2 gene. It is part of a larger family of RGS proteins that control signalling through G-protein coupled receptors (GPCR).

<span class="mw-page-title-main">GRK5</span> Protein-coding gene in the species Homo sapiens

G protein-coupled receptor kinase 5 is a member of the G protein-coupled receptor kinase subfamily of the Ser/Thr protein kinases, and is most highly similar to GRK4 and GRK6. The protein phosphorylates the activated forms of G protein-coupled receptors to regulate their signaling.

<span class="mw-page-title-main">Alpha blocker</span> Class of pharmacological agents

Alpha blockers, also known as α-blockers or α-adrenoreceptor antagonists, are a class of pharmacological agents that act as antagonists on α-adrenergic receptors (α-adrenoceptors).

<span class="mw-page-title-main">Beta-adrenergic agonist</span> Medications that relax muscles of the airways

Beta adrenergic agonists or beta agonists are medications that relax muscles of the airways, causing widening of the airways and resulting in easier breathing. They are a class of sympathomimetic agents, each acting upon the beta adrenoceptors. In general, pure beta-adrenergic agonists have the opposite function of beta blockers: beta-adrenoreceptor agonist ligands mimic the actions of both epinephrine- and norepinephrine- signaling, in the heart and lungs, and in smooth muscle tissue; epinephrine expresses the higher affinity. The activation of β1, β2 and β3 activates the enzyme, adenylate cyclase. This, in turn, leads to the activation of the secondary messenger cyclic adenosine monophosphate (cAMP); cAMP then activates protein kinase A (PKA) which phosphorylates target proteins, ultimately inducing smooth muscle relaxation and contraction of the cardiac tissue.

<span class="mw-page-title-main">Brian Kobilka</span> American physiologist

Brian Kent Kobilka is an American physiologist and a recipient of the 2012 Nobel Prize in Chemistry with Robert Lefkowitz for discoveries that reveal the workings of G protein-coupled receptors. He is currently a professor in the department of Molecular and Cellular Physiology at Stanford University School of Medicine. He is also a co-founder of ConfometRx, a biotechnology company focusing on G protein-coupled receptors. He was named a member of the National Academy of Sciences in 2011.

<span class="mw-page-title-main">G beta-gamma complex</span>

The G beta-gamma complex (Gβγ) is a tightly bound dimeric protein complex, composed of one Gβ and one Gγ subunit, and is a component of heterotrimeric G proteins. Heterotrimeric G proteins, also called guanine nucleotide-binding proteins, consist of three subunits, called alpha, beta, and gamma subunits, or Gα, Gβ, and Gγ. When a G protein-coupled receptor (GPCR) is activated, Gα dissociates from Gβγ, allowing both subunits to perform their respective downstream signaling effects. One of the major functions of Gβγ is the inhibition of the Gα subunit.

Heterologous desensitization is the term for the unresponsiveness of cells to one or more agonists to which they are normally responsive. Typically, desensitization is a receptor-based phenomenon in which one receptor type, when bound to its ligand, becomes unable to further influence the signalling pathways by which it regulates cells and, in the case of cell surface membrane receptors, may thereafter be internalized. The desensitized receptor is degraded or freed of its activating ligand and re-cycled to a state where it is again able to respond to cognate ligands by activating its signalling pathways.

<span class="mw-page-title-main">GPCR oligomer</span> Class of protein complexes

A GPCR oligomer is a protein complex that consists of a small number of G protein-coupled receptors (GPCRs). It is held together by covalent bonds or by intermolecular forces. The subunits within this complex are called protomers, while unconnected receptors are called monomers. Receptor homomers consist of identical protomers, while heteromers consist of different protomers.

Coxsackieviruses-induced cardiomyopathy are positive-stranded RNA viruses in picornavirus family and the genus enterovirus, acute enterovirus infections such as Coxsackievirus B3 have been identified as the cause of virally induced acute myocarditis, resulting in dilated cardiomyopathy. Dilated cardiomyopathy in humans can be caused by multiple factors including hereditary defects in the cytoskeletal protein dystrophin in Duchenne muscular dystrophy (DMD) patients). A heart that undergoes dilated cardiomyopathy shows unique enlargement of ventricles, and thinning of the ventricular wall that may lead to heart failure. In addition to the genetic defects in dystrophin or other cytoskeletal proteins, a subset of dilated cardiomyopathy is linked to enteroviral infection in the heart, especially coxsackievirus B. Enterovirus infections are responsible for about 30% of the cases of acquired dilated cardiomyopathy in humans.

<span class="mw-page-title-main">Adrenergic receptor autoantibodies</span>

Adrenergic receptor autoantibodies

References

  1. "WHO Drug Information - International Nonproprietary Names for Pharmaceutical Substances (INN) - Recommended INN: List 91". INN and Classification of Medical Products (INN), World Health Organization. 2024-03-25. Archived from the original (PDF) on 2024-03-25. Retrieved 2024-04-03.
  2. 1 2 3 4 5 Kolter T (2023). "BC-007". In Böckler F, Dill B, Eisenbrand G, et al. (eds.). Römpp [Online]. Georg Thieme Verlag. Archived from the original on 2023-07-23.
  3. Matsui S, Fu ML (May 1998). "Myocardial injury due to G-protein coupled receptor-autoimmunity". Japanese Heart Journal. 39 (3): 261–274. doi: 10.1536/ihj.39.261 . PMID   9711178. S2CID   22133040.
  4. Bornholz B, Wallukat G, Roggenbuck D, Schimke I (2017-02-17). "Chapter 3 - Autoantibodies Directed Against G-Protein-Coupled Receptors in Cardiovascular Diseases: Basics and Diagnostics". In Nussinovitch U (ed.). The Heart in Rheumatic, Autoimmune and Inflammatory Diseases. Academic Press. pp. 49–63. doi:10.1016/B978-0-12-803267-1.00003-X. ISBN   978-0-12-803267-1.
  5. Wallukat G, Müller J, Hetzer R (November 2002). "Specific removal of beta1-adrenergic autoantibodies from patients with idiopathic dilated cardiomyopathy". The New England Journal of Medicine. 347 (22): 1806. doi: 10.1056/NEJM200211283472220 . PMID   12456865.
  6. Doesch AO, Konstandin M, Celik S, Kristen A, Frankenstein L, Hardt S, et al. (2009-07-09). "Effects of protein A immunoadsorption in patients with advanced chronic dilated cardiomyopathy". Journal of Clinical Apheresis. 24 (4): 141–149. doi:10.1002/jca.20204. PMID   19591221. S2CID   5566530.
  7. Büttner, Bettina (2012). "Technology offer - Aptamers for the Treatment and Diagnosis of Diseases Seropositive for Autoantibodies - Ref. No.: CH553" (PDF). Charité-Universitätsmedizin Berlin. Archived from the original (PDF) on 2023-04-23.
  8. Haberland A, Wallukat G, Schimke I (March 2013). "The patent situation concerning the treatment of diseases associated with autoantibodies directed against G-protein-coupled receptors". Pharmaceutical Patent Analyst. 2 (2): 231–248. doi:10.4155/ppa.12.88. PMID   24237028.
  9. Patel PA, Hernandez AF (July 2013). "Targeting anti-beta-1-adrenergic receptor antibodies for dilated cardiomyopathy". European Journal of Heart Failure. 15 (7): 724–729. doi:10.1093/eurjhf/hft065. PMC   3707431 . PMID   23639780.
  10. Haberland A, Holtzhauer M, Schlichtiger A, Bartel S, Schimke I, Müller J, et al. (October 2016). "Aptamer BC 007 - A broad spectrum neutralizer of pathogenic autoantibodies against G-protein-coupled receptors". European Journal of Pharmacology. 789: 37–45. doi:10.1016/j.ejphar.2016.06.061. PMID   27375076.
  11. Wallukat G, Müller J, Haberland A, Berg S, Schulz A, Freyse EJ, et al. (January 2016). "Aptamer BC007 for neutralization of pathogenic autoantibodies directed against G-protein coupled receptors: A vision of future treatment of patients with cardiomyopathies and positivity for those autoantibodies". Atherosclerosis. 244: 44–47. doi:10.1016/j.atherosclerosis.2015.11.001. PMID   26584137.
  12. "Berlin Cures Announces Successful Completion of Phase 1 Study of BC 007 for the Treatment of Cardiomyopathy". BioSpace. 2018-08-22. Archived from the original on 2023-05-30. Retrieved 2023-05-30.
  13. 1 2 3 4 Lang, Carolin (2020-07-08). "Wirkstoff-Kandidat auf DNA Basis - Mit James Bond gegen Covid-19" [Drug candidate based on DNA - Fighting Covid-19 with James Bond]. Pharmazeutische Zeitung (PZ) - Die Zeitschrift der deutschen Apotheker (in German). Avoxa - Mediengruppe Deutscher Apotheker GmbH. ISSN   0031-7136. Archived from the original on 2020-07-08. Retrieved 2024-04-09.