Ascochyta diseases of pea | |
---|---|
Common names | ascochyta diseases of pea, ascochyta blights, Mycosphaerella blight, Ascochyta foot rot, Ascochyta blight and pod spot |
Causal agents | Ascochyta pinodes , Ascochyta pinodella , and Ascochyta pisi |
Hosts | Pisum sativum |
EPPO Code | MYCOPI |
Second EPPO code | PHOMMP |
Treatment | sanitation, crop-rotation, altering the sowing date, chemical control, biological control, and development of resistant varieties |
Ascochyta blights occur throughout the world and can be of significant economic importance. Three fungi contribute to the ascochyta blight disease complex of pea ( Pisum sativum ). [1] Ascochyta pinodes (sexual stage: Mycosphaerella pinodes ) causes Mycosphaerella blight. [2] [3] Ascochyta pinodella (synonym: Phoma medicaginis var. pinodella) causes Ascochyta foot rot, and Ascochyta pisi causes Ascochyta blight and pod spot. [3] [4] Of the three fungi, Ascochyta pinodes is of the most importance. [5] These diseases are conducive under wet and humid conditions and can cause a yield loss of up to fifty percent if left uncontrolled. [2] The best method to control ascochyta blights of pea is to reduce the amount of primary inoculum through sanitation, crop-rotation, and altering the sowing date. Other methods—chemical control, biological control, and development of resistant varieties—may also be used to effectively control ascochyta diseases. [3]
The ascochyta blight disease complex affects field peas (Pisum sativum), as well as many other legumes such as chick peas, lentils, and faba beans. [6] Although three different pathogens cause ascochyta diseases of pea, the symptoms are relatively similar to one another, thus making diagnosis difficult. However, there are some small differences between the fungal pathogens.
Ascospores of M. pinodes produce leaf infections that can be identified by many small purple spots on the undersides of leaves. Under dry conditions, these spots remain small and have no well-defined margin. [2] [3] However, under moist conditions, the purple spots enlarge, turning into well-defined, brown- black lesions. Sometimes these lesions will enlarge and coalesce together forming a completely blighted leaf. The infected leaf will die but will still remain attached to the plant. [3] From the attachment point of infected leaves, purplish-brown stem lesions are produced. These lesions extend upward and downward from the point of attachment. Over time, these lesions become increasingly longer and oftentimes coalesce with to completely girdle the stems of the plant. This gives the lower half of the plant a blue-black appearance. When M. pinodes infects the blossoms, small, pinpoint lesions appear on the flowers causing the blossom or small pod to drop. This greatly affects the number of surviving pods and limits seed production. M. pinodes infected seeds might not show symptoms, but if symptoms are present, the seeds may appear shrunken and have a dark-brown discoloration. [3] Planting of infected seeds may result in seedlings with foot rot. Severe infection may kill or stunt young plants and in mature plants, it is likely to cause senescence of all lower leaves and blackening of the stems at the base of the plants. [3]
The symptoms of P. pinodella are very similar to those caused by M. pinodes, but less severe. P. pinodella tends to cause less damage to the leaves, stems, and pods. [2] [3] In contrast, the foot rot is usually more severe, oftentimes infecting the stem at the soil line and extending below ground, causing the lateral roots to die. [3] [4]
A. pisi can be identified by slightly sunken, tan-colored lesions that are defined by dark-brown margins. Lesions on leaves and pods are circular in shape, while lesions are elongated on stems. [2] Oftentimes, small black pycnidia are present. A. pisi rarely attacks the base of the plant or causes foot rot in comparison to M. pinodes and P. pinodella. [3]
Certain techniques can be used to determine which pathogen is causing disease. One standard technique for distinguishing strains is microscopy. Under a microscope, M. pinodes can be diagnosed by the presence of pseudothecia. P pinodella can be diagnosed by the size of conidia produced. P. pinodella produces conidia that are smaller than the conidia of M. pinodes or A. pisi. A. pisi can be diagnosed by the color of the conidia. In comparison to the light colored, buff spore masses of M. pinodes and P. pinodella produced on oatmeal agar, A. pisi spores masses are carrot red. [3]
Other techniques for diagnosis involve serological assays, isoenzyme analysis, restriction fragment length polymorphisms (RFLPs), random amplified polymorphic DNA (RAPD) assays, and by using monoclonal antibodies. [3]
Ascochyta blight of pea is caused by Ascomycete fungi. This fungus has an anamorphic (asexual) stage and a teleomorphic (sexual) stage. [7] Ascochyta fungal pathogens are heterothallic, meaning they require two compatible hyphae strains to form their sexual stage.[ citation needed ] Pycnidia of Ascochyta spp. can overwinter in soil, seeds, or infected plant debris.[ citation needed ] They release pycnidiospores that come into contact with host tissue and germinate- as the primary inoculum- penetrating through stomatal openings in the Spring. Lesions soon become visible on the leaves. Next, the fungal hyphae grows and produces pear-shaped pycnidia, eventually releasing pycnidiospores that can reinfect plants or seeds via rain splashes- these are considered the secondary inoculum. Compatible hyphae may also fuse to form dikaryotic mycelium, that produce asci-bearing pseudothecia. These can also overwinter in infected plant debris and release their ascospores in the spring to infect new hosts as primary inoculum via wind. [3] The presence of two mating types contributes to genetic variation via recombination. This has helped the pathogen to create outbreaks in previously resistant varieties of plants.[ citation needed ] Usually, Ascochyta species are host specific: A. fabae , A. lentis , A. pisi , and A. viciae-villosae infect the faba bean, lentil, pea, and hairy vetch respectively. [8] That is, each species only causes symptoms on their respective hosts and not on another.
Areas where rainfall and/or high humidity occur during the growing season are most conducive to the success of Ascochyta blight. [9] When the crop canopy closes, the infection often intensifies due to the dense growth that prevents dry air from entering the canopy. Incidentally, the disease symptoms are often most prevalent at the base of the plant initially and spread up the plant with time. [10] Ascochyta blight is most prevalent in latitudes ranging from 26˚ N to 45˚ N. Tropical conditions limit disease development. Conditions In the 26˚ N - 45˚ N latitudinal range favor this disease due to the moderate temperature, high humidity, and wet plant surface resulting from dew or rain. [11] Ascochyta fungi grow most rapidly at 20 °C or less, anything above 20 °C begins to limit growth. [9] The sexual ascospores can be carried long distances by wind, reducing the effectiveness of crop rotation as a defense against Ascochyta blight. The asexual conidia travel short distances to new hosts via water splashes from rain.[ citation needed ]
Mycosphaerella blight is the most prevalent Ascochyta disease, which is found in all pea growing regions such as Ireland, United States, Morocco, Iran, Argentina, Australia, and Spain. [7] The average yield loss in an infected pea crop can range from 10%-50% depending on environmental conditions that may either promote or hinder the disease. [13]
Aphanomyces euteiches is a water mould, or oomycete, plant pathogen responsible for the disease Aphanomyces root rot. The species Aphanomyces euteiches can infect a variety of legumes. Symptoms of the disease can differ among hosts but generally include reduced root volume and function, leading to stunting and chlorotic foliage. Aphanomyces root rot is an important agricultural disease in the United States, Europe, Australia, New Zealand, and Japan. Management includes using resistant crop varieties and having good soil drainage, as well as testing soil for the pathogen to avoid infected fields.
Pseudocercosporella capsellae is a plant pathogen infecting crucifers. P. capsellae is the causal pathogen of white leaf spot disease, which is an economically significant disease in global agriculture. P. capsellae has a significant effect on crop yields on agricultural products, such as canola seed and rapeseed. Researchers are working hard to find effective methods of controlling this plant pathogen, using cultural control, genetic resistance, and chemical control practices. Due to its rapidly changing genome, P. capsellae is a rapidly emerging plant pathogen that is beginning to spread globally and affect farmers around the world.
Leptosphaeria coniothyrium is a plant pathogen. It can be found around the world.
Alternaria triticina is a fungal plant pathogen that causes leaf blight on wheat. A. triticina is responsible for the largest leaf blight issue in wheat and also causes disease in other major cereal grain crops. It was first identified in India in 1962 and still causes significant yield loss to wheat crops on the Indian subcontinent. The disease is caused by a fungal pathogen and causes necrotic leaf lesions and in severe cases shriveling of the leaves.
Stemphylium solani is a plant pathogen fungus in the phylum Ascomycota. It is the causal pathogen for grey leaf spot in tomatoes and leaf blight in alliums and cotton, though a wide range of additional species can serve as hosts. Symptoms include white spots on leaves and stems that progress to sunken red or purple lesions and finally leaf necrosis. S. solani reproduces and spreads through the formation of conidia on conidiophores. The teleomorph name of Stemphyllium is Pleospora though there are no naturally known occurrences of sexual reproduction. Resistant varieties of tomato and cotton are common, though the pathogen remains an important disease in Chinese garlic cultivation.
Ascochyta is a genus of ascomycete fungi, containing several species that are pathogenic to plants, particularly cereal crops. The taxonomy of this genus is still incomplete. The genus was first described in 1830 by Marie-Anne Libert, who regarded the spores as minute asci and the cell contents as spherical spores. Numerous revisions to the members of the genus and its description were made for the next several years. Species that are plant pathogenic on cereals include, A. hordei, A. graminea, A. sorghi, A. tritici. Symptoms are usually elliptical spots that are initially chlorotic and later become a necrotic brown. Management includes fungicide applications and sanitation of diseased plant tissue debris.
Cercospora arachidicola is a fungal ascomycete plant pathogen that causes early leaf spot of peanut. Peanuts originated in South America and are cultivated globally in warm, temperate and tropical regions.
Didymella pinodes is a hemibiotrophic fungal plant pathogen and the causal agent of ascochyta blight on pea plants. It is infective on several species such as Lathyrus sativus, Lupinus albus, Medicago spp., Trifolium spp., Vicia sativa, and Vicia articulata, and is thus defined as broadrange pathogen.
Alternaria dauci is a plant pathogen. The English name of the disease it incites is "carrot leaf blight".
Alternaria solani is a fungal pathogen that produces a disease in tomato and potato plants called early blight. The pathogen produces distinctive "bullseye" patterned leaf spots and can also cause stem lesions and fruit rot on tomato and tuber blight on potato. Despite the name "early," foliar symptoms usually occur on older leaves. If uncontrolled, early blight can cause significant yield reductions. Primary methods of controlling this disease include preventing long periods of wetness on leaf surfaces and applying fungicides. Early blight can also be caused by Alternaria tomatophila, which is more virulent on stems and leaves of tomato plants than Alternaria solani.
Ascochyta pisi is a fungal plant pathogen that causes ascochyta blight on pea, causing lesions of stems, leaves, and pods. These same symptoms can also be caused by Ascochyta pinodes, and the two fungi are not easily distinguishable.
Didymella bryoniae, syn. Mycosphaerella melonis, is an ascomycete fungal plant pathogen that causes gummy stem blight on the family Cucurbitaceae, which includes cantaloupe, cucumber, muskmelon and watermelon plants. The anamorph/asexual stage for this fungus is called Phoma cucurbitacearum. When this pathogen infects the fruit of cucurbits it is called black rot.
Peronosclerospora sorghi is a plant pathogen. It is the causal agent of sorghum downy mildew. The pathogen is a fungal-like protist in the oomycota, or water mold, class. Peronosclerospora sorghi infects susceptible plants though sexual oospores, which survive in the soil, and asexual sporangia which are disseminated by wind. Symptoms of sorghum downy mildew include chlorosis, shredding of leaves, and death. Peronosclerospora sorghi infects maize and sorghum around the world, but causes the most severe yield reductions in Africa. The disease is controlled mainly through genetic resistance, chemical control, crop rotation, and strategic timing of planting.
Cercospora sojina is a fungal plant pathogen which causes frogeye leaf spot of soybeans. Frog eye leaf spot is a major disease on soybeans in the southern U.S. and has recently started to expand into the northern U.S. where soybeans are grown. The disease is also found in other soybean production areas of the world.
Grey leaf spot (GLS) is a foliar fungal disease that affects maize, also known as corn. GLS is considered one of the most significant yield-limiting diseases of corn worldwide. There are two fungal pathogens that cause GLS: Cercospora zeae-maydis and Cercospora zeina. Symptoms seen on corn include leaf lesions, discoloration (chlorosis), and foliar blight. Distinct symptoms of GLS are rectangular, brown to gray necrotic lesions that run parallel to the leaf, spanning the spaces between the secondary leaf veins. The fungus survives in the debris of topsoil and infects healthy crops via asexual spores called conidia. Environmental conditions that best suit infection and growth include moist, humid, and warm climates. Poor airflow, low sunlight, overcrowding, improper soil nutrient and irrigation management, and poor soil drainage can all contribute to the propagation of the disease. Management techniques include crop resistance, crop rotation, residue management, use of fungicides, and weed control. The purpose of disease management is to prevent the amount of secondary disease cycles as well as to protect leaf area from damage prior to grain formation. Corn grey leaf spot is an important disease of corn production in the United States, economically significant throughout the Midwest and Mid-Atlantic regions. However, it is also prevalent in Africa, Central America, China, Europe, India, Mexico, the Philippines, northern South America, and Southeast Asia. The teleomorph of Cercospora zeae-maydis is assumed to be Mycosphaerella sp.
Southern corn leaf blight (SCLB) is a fungal disease of maize caused by the plant pathogen Bipolaris maydis.
Gummy stem blight is a cucurbit-rot disease caused by the fungal plant pathogen Didymella bryoniae. Gummy stem blight can affect a host at any stage of growth in its development and affects all parts of the host including leaves, stems and fruits. Symptoms generally consist of circular dark tan lesions that blight the leaf, water soaked leaves, stem cankers, and gummy brown ooze that exudes from cankers, giving it the name gummy stem blight. Gummy stem blight reduces yields of edible cucurbits by devastating the vines and leaves and rotting the fruits. There are various methods to control gummy stem blight, including use of treated seed, crop rotation, using preventative fungicides, eradication of diseased material, and deep plowing previous debris.
Alternaria black spot of canola or grey leaf spot is an ascomycete fungal disease caused by a group of pathogens including: Alternaria brassicae, A. alternata and A. raphani. This pathogen is characterized by dark, sunken lesions of various size on all parts of the plant, including the leaves, stem, and pods. Its primary economic host is canola. In its early stages it only affects the plants slightly by reducing photosynthesis, however as the plant matures it can cause damage to the seeds and more, reducing oil yield as well.
Botrytis squamosa is a fungus that causes leaf blight on onion that is distinctly characterized by the two stages – leaf spotting followed by blighting. The pathogen is an ascomycete that belongs to the family Sclerotiniaceae in the order Helotiales. The lesions start out as whitish streaks and take on a yellow tinge as they mature. They cause yield losses up to 30%. This fungus is endemic to the USA and has also been reported in Europe, Asia, and Australia. Typical management of this disease includes chemical fungicides with significant efforts being made to establish a means of biological control.
Alternaria leaf spot or Alternaria leaf blight are a group of fungal diseases in plants, that have a variety of hosts. The diseases infects common garden plants, such as cabbage, and are caused by several closely related species of fungi. Some of these fungal species target specific plants, while others have been known to target plant families. One commercially relevant plant genus that can be affected by Alternaria Leaf Spot is Brassica, as the cosmetic issues caused by symptomatic lesions can lead to rejection of crops by distributors and buyers. When certain crops such as cauliflower and broccoli are infected, the heads deteriorate and there is a complete loss of marketability. Secondary soft-rotting organisms can infect stored cabbage that has been affected by Alternaria Leaf Spot by entering through symptomatic lesions. Alternaria Leaf Spot diseases that affect Brassica species are caused by the pathogens Alternaria brassicae and Alternaria brassicicola.