Ascochyta pisi | |
---|---|
Ascochyta pisi on leaf and pod of pea | |
Scientific classification | |
Domain: | Eukaryota |
Kingdom: | Fungi |
Division: | Ascomycota |
Class: | Dothideomycetes |
Order: | Pleosporales |
Family: | Didymellaceae |
Genus: | Ascochyta |
Species: | A. pisi |
Binomial name | |
Ascochyta pisi Lib. (1830) | |
Synonyms | |
Ascochyta pisi is a fungal plant pathogen that causes ascochyta blight on pea, causing lesions of stems, leaves, and pods. These same symptoms can also be caused by Ascochyta pinodes , and the two fungi are not easily distinguishable. [1]
The host of Ascochyta pisi is the field pea (Pisum sativum L.). Ascochyta pisi also infects 20 genera of plants and more than 50 plant species including soybean, sweet pea, lentil, alfalfa, common bean, clover, black-eyed-pea, and broad bean. [2]
Field pea is an annual, cool season legume that is native to northwest and southwest Asia. Ascochyta blight of peas is one of the most important diseases of pea in terms of acreage affected. Yield losses of 5 to 15% are common during wet conditions. [2]
Symptoms include:
Ascochyta blight of peas is caused by a fungus. More than one fungal species can cause this disease. [2] Other pathogens that cause Ascochyta blight, besides Ascochyta pisi, include: Mycosphaerella pinodes , Phoma medicaginis var. pinodella , and Phoma koolunga . [4] Mycosphaerella pinodes is the only species that develops a sexual spore stage on infected residue. This stage results in the production of wind-blown ascospores. [3] Ascospores can be dispersed several kilometers. Ascospore release begins in the spring and can continue into the summer if there is enough moisture. [3] Didymella pisi is the teliomorph stage of Ascochyta pisi [2]
All above ground parts of the pea plant and all growth stages are susceptible to Ascochyta pisi. [2] The fungus overwinters in seed, soil, or infected crop residues. Infected crop residue is the primary source of infection in the main pea producing areas. [3] The fungus survives on seeds and in the soil as resting spores, called chlamydospores. [5] The seed to seedling transmission rate is low. [2] Infected seeds turn purplish-brown and are often shriveled and smaller in size [6] The pathogen survives as hyphae in the seed coat and embryo. [6] New disease is established when spores of the fungus are carried to a new, healthy crop by wind or rain splash. These fungal spores then penetrate the leaf. [4] In the spring, it produces conidia in pycnidia. [3] The release of these spores begins in spring and can continue into the summer if moist conditions persist. The conidia are spread short distances by wind and rain. [5] Disease can also be established by planting infected seed. [4] Symptoms appear within 2–4 days after initial infection. [3]
The Ascochyta pisi spores are viable on crop debris, although they do not survive for more than a year. Other Ascochyta blight pathogens have thick walled chlamydospores, which can survive for up to a few years in the soil. [5]
Before planting, some recommended management practices include destroying infected crop residues, crop rotation, and planting the current crop far from the previously infected crops’ field or residues. Disease can be managed in multiple ways during and after planting. One method to manage disease is to follow the recommended seeding dates and rates to avoid fostering an ideal environment for the pathogen. If the seed density is too high and planted too early, there is increased exposure to the plant pathogen. This seeding practice also creates an ideal environment for the pathogen because the plants often produce larger canopies and experience more lodging, which creates a close, high-humidity environment ideal for the pathogen. [5] Long term crop rotation with non-host crops is recommended. Chemical control with fungicidal seed dressings is another effective method of control. [4]
This pathogen needs cool, moist conditions, and development occurs more quickly as plant tissues age. An increase in severity of infection is often noted when the crop canopy closes due to the dense growth that prevents dry air from penetrating the canopy. This creates a cool, humid, moist environment under the canopy, and as a result, the disease symptoms are most prevalent at the base of the canopy and spread up the plant. [5] Plant lodging also creates a dense, humid environment favorable for the pathogen. The optimal temperature for disease establishment and development is around 20 °C. Spore dispersal and the development of the disease are slowed in the absence of high levels of moisture. [3]
Aphanomyces euteiches is a water mould, or oomycete, plant pathogen responsible for the disease Aphanomyces root rot. The species Aphanomyces euteiches can infect a variety of legumes. Symptoms of the disease can differ among hosts but generally include reduced root volume and function, leading to stunting and chlorotic foliage. Aphanomyces root rot is an important agricultural disease in the United States, Europe, Australia, New Zealand, and Japan. Management includes using resistant crop varieties and having good soil drainage, as well as testing soil for the pathogen to avoid infected fields.
Alternaria triticina is a fungal plant pathogen that causes leaf blight on wheat. A. triticina is responsible for the largest leaf blight issue in wheat and also causes disease in other major cereal grain crops. It was first identified in India in 1962 and still causes significant yield loss to wheat crops on the Indian subcontinent. The disease is caused by a fungal pathogen and causes necrotic leaf lesions and in severe cases shriveling of the leaves.
Gibberella zeae, also known by the name of its anamorph Fusarium graminearum, is a fungal plant pathogen which causes fusarium head blight (FHB), a devastating disease on wheat and barley. The pathogen is responsible for billions of dollars in economic losses worldwide each year. Infection causes shifts in the amino acid composition of wheat, resulting in shriveled kernels and contaminating the remaining grain with mycotoxins, mainly deoxynivalenol (DON), which inhibits protein biosynthesis; and zearalenone, an estrogenic mycotoxin. These toxins cause vomiting, liver damage, and reproductive defects in livestock, and are harmful to humans through contaminated food. Despite great efforts to find resistance genes against F. graminearum, no completely resistant variety is currently available. Research on the biology of F. graminearum is directed towards gaining insight into more details about the infection process and reveal weak spots in the life cycle of this pathogen to develop fungicides that can protect wheat from scab infection.
Ascochyta is a genus of ascomycete fungi, containing several species that are pathogenic to plants, particularly cereal crops. The taxonomy of this genus is still incomplete. The genus was first described in 1830 by Marie-Anne Libert, who regarded the spores as minute asci and the cell contents as spherical spores. Numerous revisions to the members of the genus and its description were made for the next several years. Species that are plant pathogenic on cereals include, A. hordei, A. graminea, A. sorghi, A. tritici. Symptoms are usually elliptical spots that are initially chlorotic and later become a necrotic brown. Management includes fungicide applications and sanitation of diseased plant tissue debris.
Didymella pinodes is a hemibiotrophic fungal plant pathogen and the causal agent of ascochyta blight on pea plants. It is infective on several species such as Lathyrus sativus, Lupinus albus, Medicago spp., Trifolium spp., Vicia sativa, and Vicia articulata, and is thus defined as broadrange pathogen.
Didymella rabiei, commonly called chickpea ascochyta blight fungus, is a fungal plant pathogen of chickpea. Didymella rabiei is the teleomorph of Ascochyta rabiei, which is the anamorph, but both names are the same species.
Alternaria dauci is a plant pathogen. The English name of the disease it incites is "carrot leaf blight".
Alternaria solani is a fungal pathogen that produces a disease in tomato and potato plants called early blight. The pathogen produces distinctive "bullseye" patterned leaf spots and can also cause stem lesions and fruit rot on tomato and tuber blight on potato. Despite the name "early," foliar symptoms usually occur on older leaves. If uncontrolled, early blight can cause significant yield reductions. Primary methods of controlling this disease include preventing long periods of wetness on leaf surfaces and applying fungicides. Early blight can also be caused by Alternaria tomatophila, which is more virulent on stems and leaves of tomato plants than Alternaria solani.
Ascochyta sorghi is a fungal plant pathogen. It causes Ascochyta leaf spot on barley that can also be caused by the related fungi Ascochyta hordei, Ascochyta graminea and Ascochyta tritici. It is considered a minor disease of barley.
Didymella bryoniae, syn. Mycosphaerella melonis, is an ascomycete fungal plant pathogen that causes gummy stem blight on the family Cucurbitaceae, which includes cantaloupe, cucumber, muskmelon and watermelon plants. The anamorph/asexual stage for this fungus is called Phoma cucurbitacearum. When this pathogen infects the fruit of cucurbits it is called black rot.
Cercospora sojina is a fungal plant pathogen which causes frogeye leaf spot of soybeans. Frog eye leaf spot is a major disease on soybeans in the southern U.S. and has recently started to expand into the northern U.S. where soybeans are grown. The disease is also found in other soybean production areas of the world.
Diaporthe phaseolorum var. sojae is a plant pathogen infecting soybean and peanut.
Phialophora gregata is a Deuteromycete fungus that is a plant pathogen which causes the disease commonly known as brown stem rot of soybean. P. gregata does not produce survival structures, but has the ability to overwinter as mycelium in decaying soybean residue.
This article summarizes different crops, what common fungal problems they have, and how fungicide should be used in order to mitigate damage and crop loss. This page also covers how specific fungal infections affect crops present in the United States.
Ascochyta blights occur throughout the world and can be of significant economic importance. Three fungi contribute to the ascochyta blight disease complex of pea. Ascochyta pinodes causes Mycosphaerella blight. Ascochyta pinodella causes Ascochyta foot rot, and Ascochyta pisi causes Ascochyta blight and pod spot. Of the three fungi, Ascochyta pinodes is of the most importance. These diseases are conducive under wet and humid conditions and can cause a yield loss of up to fifty percent if left uncontrolled. The best method to control ascochyta blights of pea is to reduce the amount of primary inoculum through sanitation, crop-rotation, and altering the sowing date. Other methods—chemical control, biological control, and development of resistant varieties—may also be used to effectively control ascochyta diseases.
Southern corn leaf blight (SCLB) is a fungal disease of maize caused by the plant pathogen Bipolaris maydis.
Black pod disease is a fungal disease of Cocoa trees. This pathogen if left untreated can destroy all yields; annually the pathogen can cause a yield loss of up to 1/3 and up to 10% of total trees can be lost completely.
Gummy stem blight is a cucurbit-rot disease caused by the fungal plant pathogen Didymella bryoniae. Gummy stem blight can affect a host at any stage of growth in its development and affects all parts of the host including leaves, stems and fruits. Symptoms generally consist of circular dark tan lesions that blight the leaf, water soaked leaves, stem cankers, and gummy brown ooze that exudes from cankers, giving it the name gummy stem blight. Gummy stem blight reduces yields of edible cucurbits by devastating the vines and leaves and rotting the fruits. There are various methods to control gummy stem blight, including use of treated seed, crop rotation, using preventative fungicides, eradication of diseased material, and deep plowing previous debris.
Alternaria black spot of canola or grey leaf spot is an ascomycete fungal disease caused by a group of pathogens including: Alternaria brassicae, A. alternata and A. raphani. This pathogen is characterized by dark, sunken lesions of various size on all parts of the plant, including the leaves, stem, and pods. Its primary economic host is canola. In its early stages it only affects the plants slightly by reducing photosynthesis, however as the plant matures it can cause damage to the seeds and more, reducing oil yield as well.
Northern corn leaf blight (NCLB) or Turcicum leaf blight (TLB) is a foliar disease of corn (maize) caused by Exserohilum turcicum, the anamorph of the ascomycete Setosphaeria turcica. With its characteristic cigar-shaped lesions, this disease can cause significant yield loss in susceptible corn hybrids.