Audio noise measurement

Last updated

Audio noise measurement is a process carried out to assess the quality of audio equipment, such as the kind used in recording studios, broadcast engineering, and in-home high fidelity.

Contents

In audio equipment noise is a low-level hiss or buzz that intrudes on audio output. Every piece of equipment which the recorded signal subsequently passes through will add a certain amount of electronic noise the process of removing this and other noises is called noise reduction.

Origins of noise – the need for weighting

Microphones, amplifiers and recording systems all add some electronic noise to the signals passing through them, generally described as hum, buzz or hiss. All buildings have low-level magnetic and electrostatic fields in and around them emanating from mains supply wiring, and these can induce hum into signal paths, typically 50 Hz or 60 Hz (depending on the country's electrical supply standard) and lower harmonics. Shielded cables help to prevent this, and on professional equipment where longer interconnections are common, balanced signal connections (most often with XLR or phone connectors) are usually employed. Hiss is the result of random signals, often arising from the random motion of electrons in transistors and other electronic components, or the random distribution of oxide particles on analog magnetic tape. It is predominantly heard at high frequencies, sounding like steam or compressed air.

Attempts to measure noise in audio equipment as RMS voltage, using a simple level meter or voltmeter, do not produce useful results; a special noise-measuring instrument is required. This is because noise contains energy spread over a wide range of frequencies and levels, and different sources of noise have different spectral content. For measurements to allow fair comparison of different systems they must be made using a measuring instrument that responds in a way that corresponds to how we hear sounds. From this, three requirements follow. Firstly, it is important that frequencies above or below those that can be heard by even the best ears are filtered out and ignored by bandwidth limiting (usually 22 Hz to 22 kHz). Secondly, the measuring instrument should give varying emphasis to different frequency components of the noise in the same way that our ears do, a process referred to as weighting. Thirdly, the rectifier or detector that is used to convert the varying alternating noise signal into a steady positive representation of level should take time to respond fully to brief peaks to the same extent that our ears do; it should have the correct dynamics.

The proper measurement of noise, therefore, requires the use of a specified method, with defined measurement bandwidth and weighting curve, and rectifier dynamics. The two main methods defined by current standards are A-weighting and ITU-R 468 (formerly known as CCIR weighting).

A-weighting

A-weighting uses a weighting curve based on equal-loudness contours that describe our hearing sensitivity to pure tones, but it turns out that the assumption that such contours would be valid for noise components was wrong.[ citation needed ] While the A-weighting curve peaks by about 2 dB around 2 kHz, it turns out that our sensitivity to noise peaks by some 12.2 dB at 6 kHz.[ citation needed ]

ITU-R 468 weighting

Lindos3.svg

When measurements started to be used in reviews of consumer equipment in the late 1960s it became apparent that they did not always correlate with what was heard. In particular, the introduction of Dolby B noise reduction on cassette recorders was found to make them sound a full 10.2 dB less noisy, yet they did not measure 10.2 dB better. Various new methods were then devised, including one which used a harsher weighting filter and a quasi-peak rectifier, defined as part of the German DIN2 45500 Hi-Fi standard. This standard, no longer in use, attempted to lay down minimum performance requirements in all areas for High Fidelity reproduction.

The introduction of FM radio, which also generates predominantly high-frequency hiss, also showed up the unsatisfactory nature of A-weighting, and the BBC Research Department undertook a research project to determine which of several weighting filter and rectifier characteristics gave results that were most in line with the judgment of a panel of listeners, using a wide variety of different types of noise. BBC Research Department Report EL-17 formed the basis of what became known as CCIR recommendation 468, which specified both a new weighting curve and a quasi-peak rectifier. This became the standard of choice for broadcasters worldwide, and it was also adopted by Dolby, for measurements on its noise-reduction systems which were rapidly becoming the standard in cinema sound, as well as in recording studios and the home.

Though they represent what we truly hear, ITU-R 468 noise weighting gives figures that are typically some 112 dB worse than A-weighted, a fact that brought resistance from marketing departments[ neutrality is disputed ][ dubious ] reluctant to put worse specifications on their equipment than the public had been used to. Dolby tried to get around this by introducing a version of their own called CCIR-Dolby which incorporated a 62 dB shift into the result (and a cheaper average reading rectifier), but this only confused matters, and was very much disapproved of by the CCIR.[ citation needed ]

With the demise of the CCIR, the 468 standard is now maintained as ITU-R 468, by the International Telecommunication Union, and forms part of many national and international standards, in particular by the IEC (International Electrotechnical Commission), and the BSI (British Standards Institute). It is the only way to measure noise that allows fair comparisons; and yet the flawed A-weighting has made a comeback in the consumer field recently, for the simple reason that it gives the lower figures that are considered more impressive by marketing departments.[ neutrality is disputed ][ dubious ]

Signal-to-noise ratio and dynamic range

Audio equipment specifications tend to include the terms signal-to-noise ratio and dynamic range , both of which have multiple definitions, sometimes treated as synonyms. The exact meaning must be specified along with the measurement.

Analog

Dynamic range used to mean[ specify ] the difference between maximum level and noise level, with maximum level defined as a clipping signal with a specified THD+N. The term has become corrupted by a tendency[ citation needed ] to refer to the dynamic range of CD players as meaning the noise level on a blank recording with no dither, (in other words, just the analog noise content at the output). This is not particularly useful; especially since many CD players incorporate automatic muting in the absence of signal.

Since the early 1990s various writers such as Julian Dunn have suggested that dynamic range be measured in the presence of a low-level test signal. Thus, any spurious signals caused by the test signal or distortion will not degrade the signal-to-noise ratio. [1] This also addresses concerns about muting circuits.

Digital

In 1999, Steven Harris & Clif Sanchez Cirrus Logic published a white paper titled "Personal Computer Audio Quality Measurements" stating:

Dynamic Range is the ratio of the full scale signal level to the RMS noise floor[ when defined as? ], in the presence of signal, expressed in dB2 FS. This specification is given as an absolute number and is sometimes referred to as Signal-to-Noise Ratio (SNR) in the presence of a signal. The label SNR should not be used due to industry confusion over the exact definition. DR can be measured using the THD+N measurement with a -602 dB FS signal. This low amplitude is small enough to minimize any large signal non-linearity, but large enough to ensure that the system under test is being exercised. Other test signal amplitudes may be used, provided that the signal level is such that no distortion components are generated.

In 2000 the AES released AES Information Document 6id-2000 which defined dynamic range as "20 times the logarithm of the ratio of the full-scale signal to the r.m.s. noise floor in the presence of signal, expressed in dB2 FS" with the following note:

This specification is sometimes referred to as signal-to-noise ratio (SNR) in the presence of a signal. The label SNR should not be used due to industry confusion over the exact definition. SNR is often used to indicate signal-to-noise ratio, with the noise level being measured with no signal. This can often give an optimistic result because of muting circuits, which mute the noise when no signal is present.

See also

Related Research Articles

The decibel is a relative unit of measurement equal to one tenth of a bel (B). It expresses the ratio of two values of a power or root-power quantity on a logarithmic scale. Two signals whose levels differ by one decibel have a power ratio of 101/10 or root-power ratio of 10120.

<span class="mw-page-title-main">Weighting filter</span>

A weighting filter is used to emphasize or suppress some aspects of a phenomenon compared to others, for measurement or other purposes.

Dynamic range is the ratio between the largest and smallest values that a certain quantity can assume. It is often used in the context of signals, like sound and light. It is measured either as a ratio or as a base-10 (decibel) or base-2 logarithmic value of the difference between the smallest and largest signal values.

Signal-to-noise ratio is a measure used in science and engineering that compares the level of a desired signal to the level of background noise. SNR is defined as the ratio of signal power to noise power, often expressed in decibels. A ratio higher than 1:1 indicates more signal than noise.

The total harmonic distortion is a measurement of the harmonic distortion present in a signal and is defined as the ratio of the sum of the powers of all harmonic components to the power of the fundamental frequency. Distortion factor, a closely related term, is sometimes used as a synonym.

<span class="mw-page-title-main">Dolby noise-reduction system</span> A line of noise reduction systems for reel-to-reel and cassette tape recorders

A Dolby noise-reduction system, or Dolby NR, is one of a series of noise reduction systems developed by Dolby Laboratories for use in analog audio tape recording. The first was Dolby A, a professional broadband noise reduction system for recording studios in 1965, but the best-known is Dolby B, a sliding band system for the consumer market, which helped make high fidelity practical on cassette tapes, which used a relatively noisy tape size and speed. It is common on high-fidelity stereo tape players and recorders to the present day, although Dolby has as of 2016 ceased licensing the technology for new cassette decks. Of the noise reduction systems, Dolby A and Dolby SR were developed for professional use. Dolby B, C, and S were designed for the consumer market. Aside from Dolby HX, all the Dolby variants work by companding: compressing the dynamic range of the sound during recording, and expanding it during playback.

<span class="mw-page-title-main">Audio system measurements</span> Means of quantifying system performance

Audio system measurements are a means of quantifying system performance. These measurements are made for several purposes. Designers take measurements so that they can specify the performance of a piece of equipment. Maintenance engineers make them to ensure equipment is still working to specification, or to ensure that the cumulative defects of an audio path are within limits considered acceptable. Audio system measurements often accommodate psychoacoustic principles to measure the system in a way that relates to human hearing.

dbx (noise reduction) Family of noise reduction systems

dbx is a family of noise reduction systems developed by the company of the same name. The most common implementations are dbx Type I and dbx Type II for analog tape recording and, less commonly, vinyl LPs. A separate implementation, known as dbx-TV, is part of the MTS system used to provide stereo sound to North American and certain other TV systems. The company, dbx, Inc., was also involved with Dynamic Noise Reduction (DNR) systems.

<span class="mw-page-title-main">Equal-loudness contour</span> Frequency characteristics of hearing and perceived volume

An equal-loudness contour is a measure of sound pressure level, over the frequency spectrum, for which a listener perceives a constant loudness when presented with pure steady tones. The unit of measurement for loudness levels is the phon and is arrived at by reference to equal-loudness contours. By definition, two sine waves of differing frequencies are said to have equal-loudness level measured in phons if they are perceived as equally loud by the average young person without significant hearing impairment.

A weighting curve is a graph of a set of factors, that are used to 'weight' measured values of a variable according to their importance in relation to some outcome. An important example is frequency weighting in sound level measurement where a specific set of weighting curves known as A-, B-, C- and D-weighting as defined in IEC 61672 are used. Unweighted measurements of sound pressure do not correspond to perceived loudness because the human ear is less sensitive at low and high frequencies, with the effect more pronounced at lower sound levels. The four curves are applied to the measured sound level, for example by the use of a weighting filter in a sound level meter, to arrive at readings of loudness in phons or in decibels (dB) above the threshold of hearing.

<span class="mw-page-title-main">ITU-R 468 noise weighting</span> Noise measurement standard

ITU-R 468 is a standard relating to noise measurement, widely used when measuring noise in audio systems. The standard, now referred to as ITU-R BS.468-4, defines a weighting filter curve, together with a quasi-peak rectifier having special characteristics as defined by specified tone-burst tests. It is currently maintained by the International Telecommunication Union who took it over from the CCIR.

<span class="mw-page-title-main">Weighting</span>

The process of weighting involves emphasizing the contribution of particular aspects of a phenomenon over others to an outcome or result; thereby highlighting those aspects in comparison to others in the analysis. That is, rather than each variable in the data set contributing equally to the final result, some of the data is adjusted to make a greater contribution than others. This is analogous to the practice of adding (extra) weight to one side of a pair of scales in order to favour either the buyer or seller.

Programme level refers to the signal level that an audio source is transmitted or recorded at, and is important in audio if listeners of Compact Discs (CDs), radio and television are to get the best experience, without excessive noise in quiet periods or distortion of loud sounds. Programme level is often measured using a peak programme meter or a VU meter.

Measurement of wow and flutter is carried out on audio tape machines, cassette recorders and players, and other analog recording and reproduction devices with rotary components This measurement quantifies the amount of 'frequency wobble' present in subjectively valid terms. Turntables tend to suffer mainly slow wow. In digital systems, which are locked to crystal oscillators, variations in clock timing are referred to as wander or jitter, depending on speed.

A quasi-peak detector is a type of electronic detector or rectifier. Quasi-peak detectors for specific purposes have usually been standardized with mathematically precisely defined dynamic characteristics of attack time, integration time, and decay time or fall-back time.

<span class="mw-page-title-main">Audio bit depth</span> Number of bits of information recorded for each digital audio sample

In digital audio using pulse-code modulation (PCM), bit depth is the number of bits of information in each sample, and it directly corresponds to the resolution of each sample. Examples of bit depth include Compact Disc Digital Audio, which uses 16 bits per sample, and DVD-Audio and Blu-ray Disc which can support up to 24 bits per sample.

Dialnorm is the metadata parameter that controls playback gain within the Dolby Laboratories Dolby Digital (AC-3) audio compression system. Dialnorm stands for dialog normalization. Dialnorm is an integer value with range 1 to 31 corresponding to a playback gain of -30 to 0 dB (unity) respectively. Higher values afford more headroom and are appropriate for dynamic material such as an action film.

<span class="mw-page-title-main">A-weighting</span> Frequency response curves used in sound pressure level measurement

A-weighting is the most commonly used of a family of curves defined in the International standard IEC 61672:2003 and various national standards relating to the measurement of sound pressure level. A-weighting is applied to instrument-measured sound levels in an effort to account for the relative loudness perceived by the human ear, as the ear is less sensitive to low audio frequencies. It is employed by arithmetically adding a table of values, listed by octave or third-octave bands, to the measured sound pressure levels in dB. The resulting octave band measurements are usually added to provide a single A-weighted value describing the sound; the units are written as dB(A). Other weighting sets of values – B, C, D and now Z – are discussed below.

<span class="mw-page-title-main">Audio analyzer</span> Test and measurement instrument

An audio analyzer is a test and measurement instrument used to objectively quantify the audio performance of electronic and electro-acoustical devices. Audio quality metrics cover a wide variety of parameters, including level, gain, noise, harmonic and intermodulation distortion, frequency response, relative phase of signals, interchannel crosstalk, and more. In addition, many manufacturers have requirements for behavior and connectivity of audio devices that require specific tests and confirmations.

References

  1. "8-Pin, Stereo A/D Converter for Digital Audio" (PDF). Cirrus Logic. Archived from the original (PDF) on 2008-11-19. Retrieved 2022-07-31. "Dynamic range is a signal-to-noise measurement over the specified bandwidth made with a -60 dBFS signal. 60 dB is then added to the resulting measurement to refer the measurement to full scale. This technique ensures that the distortion components are below the noise level and do not affect the measurement."