Aurantimycin A

Last updated
Aurantimycin A
Aurantimycin A.svg
Names
IUPAC name
(2R)-N-[(6S,9R,16S,17S,20R,23S)-7,21-dihydroxy-6-(methoxymethyl)-20-methyl-2,5,8,15,19,22-hexaoxo-17-propan-2-yl-18-oxa-1,4,7,13,14,21,27-heptazatricyclo[21.4.0.09,14]heptacosan-16-yl]-2-hydroxy-2-[(2S,5S,6S)-2-hydroxy-6-methyl-5-(2-methylpropyl)oxan-2-yl]propanamide [1]
Other names
Aurantimycin
Identifiers
3D model (JSmol)
ChEMBL
ChemSpider
PubChem CID
  • InChI=1S/C38H64N8O14/c1-20(2)17-24-13-14-38(55,60-23(24)6)37(7,54)36(53)42-29-30(21(3)4)59-35(52)22(5)45(56)32(49)25-11-9-15-40-43(25)28(47)18-39-31(48)27(19-58-8)46(57)33(50)26-12-10-16-41-44(26)34(29)51/h20-27,29-30,40-41,54-57H,9-19H2,1-8H3,(H,39,48)(H,42,53)/t22-,23+,24+,25+,26-,27+,29+,30+,37+,38+/m1/s1
    Key: JSVPJXYQXDNLRD-NSCUIBACSA-N
  • C[C@H]1[C@@H](CC[C@](O1)([C@](C)(C(=O)N[C@H]2[C@@H](OC(=O)[C@H](N(C(=O)[C@@H]3CCCNN3C(=O)CNC(=O)[C@@H](N(C(=O)[C@H]4CCCNN4C2=O)O)COC)O)C)C(C)C)O)O)CC(C)C
Properties
C38H64N8O14
Molar mass 856.972 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Aurantimycin A is a depsipeptide antibiotic with the molecular formula C38H64N8O14. [2] [1] Aurantimycin A is produced by the bacterium Streptomyces aurantiacus . [3] [4] Aurantimycin A also show cytotoxic properties. [5]

Related Research Articles

<i>Streptomyces</i> Genus of bacteria

Streptomyces is the largest genus of Actinomycetota, and the type genus of the family Streptomycetaceae. Over 700 species of Streptomyces bacteria have been described. As with the other Actinomycetota, streptomycetes are gram-positive, and have very large genomes with high GC content. Found predominantly in soil and decaying vegetation, most streptomycetes produce spores, and are noted for their distinct "earthy" odor that results from production of a volatile metabolite, geosmin. Different strains of the same species may colonize very diverse environments.

<span class="mw-page-title-main">DD-transpeptidase</span> Bacterial enzyme

DD-transpeptidase is a bacterial enzyme that catalyzes the transfer of the R-L-αα-D-alanyl moiety of R-L-αα-D-alanyl-D-alanine carbonyl donors to the γ-OH of their active-site serine and from this to a final acceptor. It is involved in bacterial cell wall biosynthesis, namely, the transpeptidation that crosslinks the peptide side chains of peptidoglycan strands.

<span class="mw-page-title-main">Novobiocin</span> Chemical compound

Novobiocin, also known as albamycin or cathomycin, is an aminocoumarin antibiotic that is produced by the actinomycete Streptomyces niveus, which has recently been identified as a subjective synonym for S. spheroides a member of the class Actinomycetia. Other aminocoumarin antibiotics include clorobiocin and coumermycin A1. Novobiocin was first reported in the mid-1950s.

<span class="mw-page-title-main">Lincosamides</span> Group of antibiotics

Lincosamides are a class of antibiotics, which include lincomycin, clindamycin, and pirlimycin.

<span class="mw-page-title-main">Pristinamycin</span> Group of chemical compounds

Pristinamycin (INN), also spelled pristinamycine, is an antibiotic used primarily in the treatment of staphylococcal infections, and to a lesser extent streptococcal infections. It is a streptogramin group antibiotic, similar to virginiamycin, derived from the bacterium Streptomyces pristinaespiralis. It is marketed in Europe by Sanofi-Aventis under the trade name Pyostacine.

<span class="mw-page-title-main">Platensimycin</span> Chemical compound

Platensimycin, a metabolite of Streptomyces platensis, is an antibiotic, which act by blocking enzymes.

A depsipeptide is a peptide in which one or more of its amide, -C(O)NHR-, groups are replaced by the corresponding ester, -C(O)OR-. Many depsipeptides have both peptide and ester linkages. Elimination of the N–H group in a peptide structure results in a decrease of H-bonding capability, which is responsible for secondary structure and folding patterns of peptides, thus inducing structural deformation of the helix and β-sheet structures. Because of decreased resonance delocalization in esters relative to amides, depsipeptides have lower rotational barriers for cis-trans isomerization and therefore they have more flexible structures than their native analogs. They are mainly found in marine and microbial natural products.

Sir David Alan Hopwood is a British microbiologist and geneticist.

Streptogramin B is a subgroup of the streptogramin antibiotics family. These natural products are cyclic hexa- or hepta depsipeptides produced by various members of the genus of bacteria Streptomyces. Many of the members of the streptogramins reported in the literature have the same structure and different names; for example, pristinamycin IA = vernamycin Bα = mikamycin B = osteogrycin B.

Streptomyces isolates have yielded the majority of human, animal, and agricultural antibiotics, as well as a number of fundamental chemotherapy medicines. Streptomyces is the largest antibiotic-producing genus of Actinomycetota, producing chemotherapy, antibacterial, antifungal, antiparasitic drugs, and immunosuppressants. Streptomyces isolates are typically initiated with the aerial hyphal formation from the mycelium.

Mervyn James Bibb FRS is an Emeritus Fellow at the John Innes Centre, Norwich, UK.

<span class="mw-page-title-main">Acyldepsipeptide antibiotics</span> Class of chemical compounds

Acyldepsipeptide or cyclic acyldepsipeptide (ADEP) is a class of potential antibiotics first isolated from bacteria and act by deregulating the ClpP protease. Natural ADEPs were originally found as products of aerobic fermentation in Streptomyces hawaiiensis, A54556A and B, and in the culture broth of Streptomyces species, enopeptin A and B. ADEPs are of great interest in drug development due to their antibiotic properties and thus are being modified in attempt to achieve greater antimicrobial activity.

Streptomyces ambofaciens is a bacterium species from the genus Streptomyces which has been isolated from soil from France. Streptomyces ambofaciens produces ambobactin, foromacidin A, foromacidin B, foromacidin C, 18-deoxospiramicin I, 17-methylenespiramycin I and congocidin.

<i>Streptomyces aurantiacus</i> Species of bacterium

Streptomyces aurantiacus is a bacterium species from the genus Streptomyces which produces aurantin, pamamycin-621, aurantimycin A, aurantimycin B, aurantimycin C, aurantimycin D, dihydronancimycin and ancimycin.

Streptomyces azureus is a bacterium species from the genus of Streptomyces which has isolated from soil. Streptomyces azureus produces the antibiotic thiostrepton.

Streptomyces halstedii is a bacterium species from the genus of Streptomyces which has been isolated from deeper soil layers. Streptomyces halstedii produces magnamycin B, vicenistatin deltamycin A2, deltamycin A3, bafilomycin B1 and bafilomycin C1. Streptomyces halstedii also produces complex antifungal antibiotics like oligomycins and the antibiotics anisomycin and sinefungin.

Streptomyces microflavus is a bacterium species from the genus of Streptomyces which has been isolated from soil. Streptomyces microflavus produces nemadectin, fattiviracin A1, milbemycin and deoxyuridines. Streptomyces microflavus also produces the ionophore valinomycin. Streptomyces microflavus is also known to cause potato common scab disease in Korea.

<span class="mw-page-title-main">Jadomycin</span> Chemical compound

A jadomycin is a natural product produced by Streptomyces venezuelae ISP5230 (ATCC10712), the organism which is most well known for making the antibiotic chloramphenicol. The name jadomycin is applied to a family of related angucyclines which are distinguished by the E ring, which is derived from an amino acid. The amino acid incorporation which forms the E-ring is a chemical reaction, rather than enzymatic, an uncommon occurrence in biosynthesis. As such a number of jadomycins incorporating different amino acids have been discovered. Jadomycin A was the first compound of this family to be isolated and constitutes the angucylic backbone with L-isoleucine incorporated into the E-ring. A related analog, jadomycin B, is modified by glycosylation with a 2,6-dideoxy sugar, L-digitoxose. Jadomycins have cytotoxic and antibacterial properties.

Zincophorin is an antibiotic against Gram-positive bacteria and a bacterial metabolite. It is also an ionophore. It was isolated from the bacterium Streptomyces griseus.

<span class="mw-page-title-main">Dioxamycin</span> Chemical compound

Dioxamycin is a benz[a] anthraquinone antibiotic and kinase inhibitor with the molecular formula C38H40O15. Dioxamycin is produced by the bacterium Streptomyces cocklensis and Streptomyces xantholiticus.

References

  1. 1 2 "Aurantimycin A". Pubchem.ncbi.NLM.nih.gov.
  2. "Aurantimycin A, Depsipeptide antibiotic (CAS 162478-50-4) (ab144195) | Abcam". www.abcam.com.
  3. Grigoriev, P.; Schlegel, R.; Dornberger, K.; Gräfe, U. (1 February 1995). "Formation of membrane pores by aurantimycins A and B, new lipopeptide antibiotics from Streptomyces aurantiacus". Bioelectrochemistry and Bioenergetics. 36 (1): 57–59. doi:10.1016/0302-4598(94)01721-C. ISSN   0302-4598.
  4. Kolar, Patrik; Tišler, Miha (28 October 1999). "Recent Advances in the Chemistry of Pyridazines". Advances in Heterocyclic Chemistry Volume 75. Vol. 75. Academic Press. p. 170. doi:10.1016/S0065-2725(08)60985-X. ISBN   978-0-08-057661-9.
  5. Bycroft, Barrie W.; Payne, David J. (9 August 2013). Dictionary of Antibiotics and Related Substances: with CD-ROM, Second Edition. CRC Press. p. 303. ISBN   978-1-4822-8215-3.

Further reading