Autotopagnosia

Last updated

Autotopagnosia from the Greek a and gnosis, meaning "without knowledge", topos meaning "place", and auto meaning "oneself", autotopagnosia virtually translates to the "lack of knowledge about one's own space," and is clinically described as such. [1]

Contents

Autotopagnosia is a form of agnosia, characterized by an inability to localize and orient different parts of the body. [2] The psychoneurological disorder has also been referred to as "body-image agnosia" or "somatotopagnosia." Somatotopagnosia has been argued to be a better suited term to describe the condition. While autotopagnosia emphasizes the deficiencies in localizing only one's own body parts and orientation, somatotopagnosia also considers the inability to orient and recognize the body parts of others or representations of the body (e.g., manikins, diagrams). [3]

Typically, the cause of autotopagnosia is a lesion found in the parietal lobe of the left hemisphere of the brain. [3] However, it as also been noted that patients with generalized brain damage present with similar symptoms of autotopagnosia. [4] As a concept, autotopagnosia has been criticized as nonspecific; some claim that this is a manifestation of a greater symptomatic complex of anomia, marked by an inability to name things in general—not just parts of the human body. [5]

Symptoms and signs

Patients with autotopagnosia exhibit an inability to locate parts of their own body, the body of an examiner's, or the parts of a representation of a human body. Deficiencies can be in localizing parts of a certain area of the body, or the entire body.[ citation needed ]

Contiguity errors, the most common errors made by patients with autotopagnosia, refer to errors made when the patient is asked to locate a certain body part and points to the surrounding body parts, but not the part they've been asked to locate.
Semantic errors refer to errors made when patients point to body parts in the same category as that which they've been asked to locate, but cannot locate the correct body part. An example of a semantic error would be a patient pointing to an elbow when asked to locate a knee. Semantic errors are much less common than contiguity errors. [3]

Some patients demonstrating the symptoms of autotopagnosia have a decreased ability to locate parts of other multipart object. Patients are considered to have "pure" autotopagnosia, however, if their deficiency is specific to body part localization. [3] Patients with "pure" autotopagnosia often have no problems carrying out tasks involved in everyday life that require body part awareness. Patients have difficulty locating body parts when directly asked, but can carry out activities such as putting on pants without difficulty. Patients can describe the function and appearance of body parts, yet they are still unable to locate them. [3]

Damage to the left parietal lobe can result in what is called Gerstmann syndrome. It can include right-left confusion, a difficulty with writing Agraphia [4] and a difficulty with mathematics Acalculia. [6] In addition, it can also produce language deficiencies Aphasia [7] and an inability to recognize objects normally Agnosia.

Other related disorders include:

Causes

Due to the subjective nature of autotopagnosia, there are many hypotheses presented as to the underlying causation. Since the condition by definition is an inability to recognize the human body and its parts, the disorder could stem from a language deficit specific to body parts. On the other hand, the patient could have a disrupted body image or a variation of the inability to separate parts from whole. It is also believed that autotopagnosia has multiple underlying causes that cannot be categorized as either language-specific or body-image-specific. The rarity of autotopagnosia, frequently combined with the manifestation of other psychoneurological disorders, makes the prime cause extremely difficult to study. In many cases, one of these accompanying conditions—often aphasia—could be masking the patient's autotopagnosia altogether. [4]

Brain Lesions

Animation highlighting the parietal lobe of the left cerebral hemisphere Parietal lobe animation small.gif
Animation highlighting the parietal lobe of the left cerebral hemisphere

Although it is still unclear what precise deficits in brain function cause the symptoms of autotopagnosia, the location of brain damage is not as ambiguous. Autotopagnosia is most often attributed to lesions in the parietal lobe of the left hemisphere of the brain. However, it is also believed that the disorder can be caused by general brain damage as well. [4] Many different types of brain lesions can cause autotopagnosia; however, neoplastic lesions seem to be the most common. "Pure" autotopagnosia is often seen with smaller lesions, as larger lesions tend to create other unseen deficits that can confuse or mask the appearance of the symptoms of autotopagnosia—such as aphasia, as discussed above. [8] The parietal lobe is involved in the integration of sensory information and visuospatial processing. The left parietal lobe, specifically, is important to the understanding of language and mathematics, and has a more prominent role for right handed people.[ citation needed ]

Mental Representations of Body Schema

Lesions in the left parietal lobe are thought to disrupt one or more of four putative mental representations of body schema. The deficiencies associated with the disease seem to arise from a dysfunction in the mental representation of the body; however, the human psyche interprets its body schema and orientation in space through various sources of representation systems. According to Felician et al. (2003), [9] the notion of body schema can be categorized into four tiers of mental representation:

LevelTypeDescription
1Lexical and Semantic Representations of the BodyAt the first level, the mind anchors its body image to refer to body-related conceptual knowledge, associated with speech and language recognition. For instance, the identification of body parts are attributed to fundamental knowledge of the names and titles, rather than the physical locations and relationships of body parts. [9]
2Category-specific Visuospatial Representations of the BodyOn the second tier, unlike semantic representation, the visuospatial schema specifies the structural position of parts over the body surface. In particular, it relates to the local relationship between body parts and the boundaries between them. [9]
3Classical Notion of Postural SchemaOn a third level, the classical notion of postural schema emerges, which draws from various sources of sensory afferences. Information from proprioceptive, tactile, visual, auditory, and vestibular systems is consolidated to construct an on-line, three-dimensional and dynamic representation of the body in space, a "somatosensory representation." [9]
4Motor RepresentationsFinally, the skeletal-muscular system provides motor representations that participate in the formation and preservation of the somatosensory representations. [9]

Diagnosis

The nature of the alleged mental representations that underlie the act of pointing to target body parts have been a controversial issue. Originally, it was diagnosed as the effects of general mental deterioration or of aphasia on the task of pointing to body parts on verbal command. However, contemporary neuropsychological therapy seeks to establish the independence of autotopagnosia from other disorders. [10] With such a general definition, a patient that presents with a dysfunction of or failure in accessing one of four mental representation systems has autotopagnosia. Through observational testing, the type of mental misrepresentation of the body can be deduced: whether semantic, visuospatial, somatosensory, or motor misrepresentations. Neuropsychological tests can provide a proper diagnosis in regards to the specificity of patient's agnosic condition. [9]

1) Test 1: Body Part Localization: Free vision and no vision conditions

This exploratory approach assesses the patient's ability to localize one's body parts and those of the examiner in several different conditions. The examiner and subjects are seated facing one another at a one-meter distance. At the start of each trial, the examiner ensures that the subject's hands are at rest on the arms of the chair and legs uncrossed. In addition, errors are categorized as (1) left-right reversal: response to correct part on incorrect side; (2) spatial: response to area contiguous with target; (3) functional/semantic: response to area non-contiguous with target, but sharing function or a part of a larger unit; (4) unrelated to examiner's request. [11]

Test 1SpecificationsDescription
AVerbal Command: Point to SelfExaminer names a body part, and the subjects are instructed to point to that part on themselves.
BVerbal Command: Point to ExaminerExaminer names a body part, and subjects are instructed to point to that named part on the examiner.
CVisual Cue: Point to SelfExaminer points to body parts on himself, and subjects are required to point to the homologous part on themselves.
DVisual Cue: Point to ExaminerExaminer points to a body part on the subjects, and they are required to point to the homologous part on the examiner.
EBlindfold Post-Visual Cue: Point to SelfSame as Study 1c., except subjects are blindfolded after examiner points to himself, prior to response execution. [11]

2) Test 2: On-line positioning of body vis-à-vis objects

If deficits in body part localization are due to impairments in body schema, then patients should be deficient in reaching and grasping objects. This test evaluates the specificity of the patient's insufficiency, in regards to the specific positioning of body parts with respect to objects. [11]

3) Test 3: Localization of objects on the body surface

Patients were asked to point to small objects mounted on the body, acting as a body reference system (body schema). The investigation is to determine whether localization of the same points on the body surfaces assessed in Test 1 might be improved when these points correspond to external objects. [11]

4) Test 4: Body part semantic knowledge

Patient is shown photographs of 10 items of clothing and 7 grooming tools, 1 per trial, and asked to point to the part of his own body associated with each item. [11]

5) Test 5: Matching body parts: Effect of viewing angle

Assessment of whether the patient's deficit in body part representation extends to individual body parts, and whether visual attributes of the body and its parts, such as viewing angle, affect their recognition. [11]

Treatment

A CT scanner Ct-scan.jpg
A CT scanner

As autotopagnosia arises from neurological and irreversible damage, options regarding symptom reversal or control are limited. As of April 2010, there are no known specific treatments for autotopagnosia. [12]

No medications or pharmaceutical remedies have been approved by the U.S. Food and Drug Administration to treat or cure autotopagnosia. There have been cases in which extensive rehabilitation has been beneficial following restitution, repetitive training to correct the impaired function, and compensation of other skills to make up for the deficit. Rehabilitation is not a definitive treatment and only shows signs of slight improvement in a small percentage of autotopagnosia patients. [13] The condition of the disease can be monitored with continued neurological examination and using a CT scan to note the progression of the parietal lesion.[ citation needed ]

Case studies

As autotopagnosia is not a life-threatening condition it is not on the forefront of medical research. Rather, more research is conducted regarding treatments and therapies to alleviate the lesions and traumas that can cause autotopagnosia. Of all the agnosias, visual agnosia is the most common subject of investigation because it is easiest to assess and has the most promise for potential treatments. Most autotopagnosia studies are centered on a few test subjects as part of a group of unaffected or "controlled" participants, or a simple case study. Case studies surrounding a single patient are most common due to the vague nature of the disease.[ citation needed ]

Autotopagnosia studies frequently investigate several areas of patient examination: indication, verification, construction and drawing, structural and functional information and spatial and functional vicinity. The studies most often probe a patient to correctly verbally identify certain body parts on themselves, others, and an artificial model. Indication seeks to employ both verbal and non-verbal stimuli, and to differentiate the patient from themselves and others. Most patients fail the indication section however pass the verification exam, which confirms the patients knowledge of what a certain body part or object truly is. Most patients were able to draw the object or body part, yet are unable to construct its location on a working model. The structural and functional information verifies the patient's competency in deterring the specific body parts function and spatial relation to other body parts. Spatial and functional vicinity tests probe a patient to physically locate the various body parts in relation to others and by function; however these tests are usually failed.[ citation needed ]

Ennio De Renzi

Ennio De Renzi worked extensively with a variety of agnosias in 1963 and 1970. He explored, on two patients with autotopagnosia in particular, the difficulties of mentally recognizing the physical division of a whole object into sections. For example, he found his patients could not describe the position or parts of a bike, and were unable to focus on a part of the whole. De Renzi's studies gave way to countless others to give insight as to the complicated and varied mechanisms behind autotopagnosia.

G. Denes et al.

G. Denes et al. (2000) conducted a series of tests on two patients with autotopagnosia in order to verify how the body schema uses body representation to determine one's spatial arrangement. The two subjects, each had a condition which affected their parietal lobe, presented with similar degrees of agnosia according to neurological testing, yet did not have any language, behavior or memory limitations. G. Denes performed a series of tests to challenge the subjects, consisting of body related tasks, non-body localizing tasks and reaction to stimuli. The subjects were asked to name body parts and identify objects singled out by the examiner on themselves and in a picture. In addition, the objects and body parts were presented from different perspectives. The subjects were asked both on paper and via verbal command, to locate body parts on themselves, others, and mannequins. On paper there was no difference between the test and control patients however neither autotopagnosia subject was able to locate the correct body parts on command on either themselves or a mannequin, although could partially identify the objects. Most of the errors in this experiment were considered functional errors, that is, the patient touched body parts similar in function to the ones being prompted. These deficits could not be attributed to mental deterioration or visual deficiencies. [12]

J. Schwoebel et al.

J. Schwoebel et al. (2001) studied an elderly woman with autotopagnosia following a car accident which damaged her lateral occipital, left posterior temporal and posterior parietal lobe. They performed a similar series of tests, examining her ability to identify and locate body parts on a drawn figure and herself, upon verbal command. They expanded the study, repeating the verbal command tests in areas of unfamiliarity and with a series of objects rather than body parts. Schwoebel found that the subject was able to identify objects with more ease than body parts and that location familiarity was not relevant. Schwoebel stressed the difference between function and spatial vicinity tests however the subject failed both tests. Overall, the subject was unable to locate the correct parts of her body or that of another, thereby presented the classic signs of autotopagnosia. [14]

Carlo Semenza

Carlo Semenza (1988) analyzed the deficits associated with patients presenting with autotopagnosia compared with the test results of non-affected patients. He found the majority of testing errors for patients with autotopagnosia were either spatial (contiguity) or functional (conceptual), and there were few examples of random error. Similar to other studies, Semenza used both verbal and non-verbal commands and applied tests of verification, construction and description to his patients, [15] at a complex and body specific representational system, stored in the left parietal lobe, is responsible for mediating simple body location tasks. He theorized that the spatial and functional errors were due to the concept that one's knowledge of one's body is stored apart from other knowledge. This knowledge is then organized into a set of ideas, which represent a single body part, and parts of similar functionality are closely related despite actual spatial distances on the body. Semenza (2003) investigated Pick's original work surrounding the discovery of autotopagnosia.[ citation needed ]

Cecilia Guariglia

Guariglia and coll. (2002) described a case (EC) of pure autotopagnosia following a left subcortical vascular accident. [16] EC did not have any other neuropsychological deficit, including language disorder or general mental deterioration. An in-depth analysis of the deficit in localizing body parts and parts of objects or animals revealed a clear-cut dissociation between defective performances in body representation tests and normal performances on tests involving other types of stimuli. EC's performances were particularly defective on tests relying on visuo-spatial body representation, but her semantic and linguistic knowledge about body and body parts were spared. Being the first observation of a subject not affected by any cognitive impairment other than autotopagnosia, EC represents a demonstration of the existence of a system specifically devoted to body representation.

History

German Physiologist Hermann Munk (1839–1912) was the first to investigate the representation of our body's orientation. He discussed how multisensory imagery of our sensations allows for a vivid representation of the body in space, and how small legions on the sensorimotor cortex would lead to a loss of images for a specific part of the body. Accredited with finding Wernicke's Area, German neuro-pathologist Carl Wernicke (1848–1905) challenged Munk's theories, arguing that signals sent from different body parts are different from each other. The cortex was then thought to create a stable image of each body part in space by combining all of the varying incoming signals. The "master" signal integration was said to create an image of the overall body, known as "body consciousness". Gaston Bonnier (1853–1922) was the first to recognize disorders of the bodies spatial schema as physiological rather than psychiatric. However his work has been consistently criticized due to several experimental discrepancies regarding his patients association of their body parts to their actual position. Colleagues Sir Gordon Holmes (1876–1965) and Henry Head (1861–1940) [15] considered the image of the body as a specific representation, and noted this body schema as a model which postural changes were measured against. The two neurobiologists integrated the sensations from different sensors into a dynamic model of our actual posture, and studied patients lacking this postural schema.[ citation needed ]

Head and Holme's studies (1911) were developed alongside those of Arnold Pick (1851–1924), who was the first to describe autotopagnosia (1908) as the inability to locate body parts on command on a whole body structure. Pick noted those with autotopagnosia as having a dissociation between the capacity to recognize and name their own body part (as commanded by an examiner) and the inability to find the same body part on command. In a series of studies, Pick focused on patients who were unable to point to their own body parts and those of the examiner. His patients could however comprehend the body part terminology as well as locate them on a painted visual; however none had a clear demonstration of body specificity. Pick concluded a disturbance of "visual" body image and body awareness. Pick's studies introduced autotopagnosia and other category specific agnosias, such as visual and tactile agnosia. Josef Gerstmann (1887–1969) first developed the term somatotopagnosia, meaning the lack of knowledge about the body space. Gerstmann studied patients whose deficits were in the body schema and thus lacked the ability to recognize, identify or name the fingers on either hand, a phenomenon known as finger agnosia. [15] This particular ailment, known as Gerstmann syndrome, is often seen in patients with a lesion on their left angular gyrus, which is known to be frequently anatomically correlated with autotopagnosia.

Until the 1980s, there had been no scientifically accredited cases of autotopagnosia, rather agnosias that have been secondary to other neurological deficits such as dementia. [15] In fact the term autotopagnosia does not appear until Pick's studies in 1908 and 1922. [17] More recently, Carlos Semenza (2003) has expanded on Pick's theories.

As of April, 2010, the active areas of research surrounding autotopagnosia are focused on more individual case studies, and are aimed at developing possible treatment options as well as eradicating any concerns regarding the disease's legitimacy.

See also

Related Research Articles

<span class="mw-page-title-main">Agnosia</span> Medical condition

Agnosia is the inability to process sensory information. Often there is a loss of ability to recognize objects, persons, sounds, shapes, or smells while the specific sense is not defective nor is there any significant memory loss. It is usually associated with brain injury or neurological illness, particularly after damage to the occipitotemporal border, which is part of the ventral stream. Agnosia only affects a single modality, such as vision or hearing. More recently, a top-down interruption is considered to cause the disturbance of handling perceptual information.

<span class="mw-page-title-main">Parietal lobe</span> Part of the brain responsible for sensory input and some language processing

The parietal lobe is one of the four major lobes of the cerebral cortex in the brain of mammals. The parietal lobe is positioned above the temporal lobe and behind the frontal lobe and central sulcus.

<span class="mw-page-title-main">Hemispatial neglect</span> Medical condition

Hemispatial neglect is a neuropsychological condition in which, after damage to one hemisphere of the brain, a deficit in attention and awareness towards the side of space opposite brain damage is observed. It is defined by the inability of a person to process and perceive stimuli towards the contralesional side of the body or environment. Hemispatial neglect is very commonly contralateral to the damaged hemisphere, but instances of ipsilesional neglect have been reported.

<span class="mw-page-title-main">Visual memory</span> Ability to process visual and spatial information

Visual memory describes the relationship between perceptual processing and the encoding, storage and retrieval of the resulting neural representations. Visual memory occurs over a broad time range spanning from eye movements to years in order to visually navigate to a previously visited location. Visual memory is a form of memory which preserves some characteristics of our senses pertaining to visual experience. We are able to place in memory visual information which resembles objects, places, animals or people in a mental image. The experience of visual memory is also referred to as the mind's eye through which we can retrieve from our memory a mental image of original objects, places, animals or people. Visual memory is one of several cognitive systems, which are all interconnected parts that combine to form the human memory. Types of palinopsia, the persistence or recurrence of a visual image after the stimulus has been removed, is a dysfunction of visual memory.

Acalculia is an acquired impairment in which people have difficulty performing simple mathematical tasks, such as adding, subtracting, multiplying and even simply stating which of two numbers is larger. Acalculia is distinguished from dyscalculia in that acalculia is acquired late in life due to neurological injury such as stroke, while dyscalculia is a specific developmental disorder first observed during the acquisition of mathematical knowledge. The name comes from the Greek "a" meaning "not" and Latin "calculare", which means "to count".

Visual agnosia is an impairment in recognition of visually presented objects. It is not due to a deficit in vision, language, memory, or intellect. While cortical blindness results from lesions to primary visual cortex, visual agnosia is often due to damage to more anterior cortex such as the posterior occipital and/or temporal lobe(s) in the brain.[2] There are two types of visual agnosia: apperceptive agnosia and associative agnosia.

Auditory verbal agnosia (AVA), also known as pure word deafness, is the inability to comprehend speech. Individuals with this disorder lose the ability to understand language, repeat words, and write from dictation. Some patients with AVA describe hearing spoken language as meaningless noise, often as though the person speaking was doing so in a foreign language. However, spontaneous speaking, reading, and writing are preserved. The maintenance of the ability to process non-speech auditory information, including music, also remains relatively more intact than spoken language comprehension. Individuals who exhibit pure word deafness are also still able to recognize non-verbal sounds. The ability to interpret language via lip reading, hand gestures, and context clues is preserved as well. Sometimes, this agnosia is preceded by cortical deafness; however, this is not always the case. Researchers have documented that in most patients exhibiting auditory verbal agnosia, the discrimination of consonants is more difficult than that of vowels, but as with most neurological disorders, there is variation among patients.

Focal neurologic signs also known as focal neurological deficits or focal CNS signs are impairments of nerve, spinal cord, or brain function that affects a specific region of the body, e.g. weakness in the left arm, the right leg, paresis, or plegia.

<span class="mw-page-title-main">Cortical deafness</span> Medical condition

Cortical deafness is a rare form of sensorineural hearing loss caused by damage to the primary auditory cortex. Cortical deafness is an auditory disorder where the patient is unable to hear sounds but has no apparent damage to the anatomy of the ear, which can be thought of as the combination of auditory verbal agnosia and auditory agnosia. Patients with cortical deafness cannot hear any sounds, that is, they are not aware of sounds including non-speech, voices, and speech sounds. Although patients appear and feel completely deaf, they can still exhibit some reflex responses such as turning their head towards a loud sound.

Ideomotor Apraxia, often IMA, is a neurological disorder characterized by the inability to correctly imitate hand gestures and voluntarily mime tool use, e.g. pretend to brush one's hair. The ability to spontaneously use tools, such as brushing one's hair in the morning without being instructed to do so, may remain intact, but is often lost. The general concept of apraxia and the classification of ideomotor apraxia were developed in Germany in the late 19th and early 20th centuries by the work of Hugo Liepmann, Adolph Kussmaul, Arnold Pick, Paul Flechsig, Hermann Munk, Carl Nothnagel, Theodor Meynert, and linguist Heymann Steinthal, among others. Ideomotor apraxia was classified as "ideo-kinetic apraxia" by Liepmann due to the apparent dissociation of the idea of the action with its execution. The classifications of the various subtypes are not well defined at present, however, owing to issues of diagnosis and pathophysiology. Ideomotor apraxia is hypothesized to result from a disruption of the system that relates stored tool use and gesture information with the state of the body to produce the proper motor output. This system is thought to be related to the areas of the brain most often seen to be damaged when ideomotor apraxia is present: the left parietal lobe and the premotor cortex. Little can be done at present to reverse the motor deficit seen in ideomotor apraxia, although the extent of dysfunction it induces is not entirely clear.

<span class="mw-page-title-main">Integrative agnosia</span> Medical condition

Integrative agnosia is a sub-disease of agnosia, meaning the lack of integrating perceptual wholes within knowledge. Integrative agnosia can be assessed by several experimental tests such as the Efron shape test, which determines the specificity of the disease being Integrative. This disease is often caused by brain trauma, producing medial ventral lesions to the extrastriate cortex. Affecting this region of the brain produces learning impairments: the inability to integrate parts such as spatial distances or producing visual images from short or long-term memory.

Apperceptive agnosia is a failure in recognition that is due to a failure of perception. In contrast, associative agnosia is a type of agnosia where perception occurs but recognition still does not occur. When referring to apperceptive agnosia, visual and object agnosia are most commonly discussed; this occurs because apperceptive agnosia is most likely to present visual impairments. However, in addition to visual apperceptive agnosia there are also cases of apperceptive agnosia in other sensory areas.

Auditory agnosia is a form of agnosia that manifests itself primarily in the inability to recognize or differentiate between sounds. It is not a defect of the ear or "hearing", but rather a neurological inability of the brain to process sound meaning. While auditory agnosia impairs the understanding of sounds, other abilities such as reading, writing, and speaking are not hindered. It is caused by bilateral damage to the anterior superior temporal gyrus, which is part of the auditory pathway responsible for sound recognition, the auditory "what" pathway.

The neuroanatomy of memory encompasses a wide variety of anatomical structures in the brain.

Visual object recognition refers to the ability to identify the objects in view based on visual input. One important signature of visual object recognition is "object invariance", or the ability to identify objects across changes in the detailed context in which objects are viewed, including changes in illumination, object pose, and background context.

Amorphosynthesis, also called a hemi-sensory deficit, is a neuropsychological condition in which a patient experiences unilateral inattention to sensory input. This phenomenon is frequently associated with damage to the right cerebral hemisphere resulting in severe sensory deficits that are observed on the contralesional (left) side of the body. A right-sided deficit is less commonly observed and the effects are reported to be temporary and minor. Evidence suggests that the right cerebral hemisphere has a dominant role in attention and awareness to somatic sensations through ipsilateral and contralateral stimulation. In contrast, the left cerebral hemisphere is activated only by contralateral stimuli. Thus, the left and right cerebral hemispheres exhibit redundant processing to the right-side of the body and a lesion to the left cerebral hemisphere can be compensated by the ipsiversive processes of the right cerebral hemisphere. For this reason, right-sided amorphosynthesis is less often observed and is generally associated with bilateral lesions.

Constructional apraxia is characterized by an inability or difficulty to build, assemble, or draw objects. Apraxia is a neurological disorder in which people are unable to perform tasks or movements even though they understand the task, are willing to complete it, and have the physical ability to perform the movements. Constructional apraxia may be caused by lesions in the parietal lobe following stroke or it may serve as an indicator for Alzheimer's disease.

Topographical disorientation is the inability to orient oneself in one's surroundings, sometimes as a result of focal brain damage. This disability may result from the inability to make use of selective spatial information or to orient by means of specific cognitive strategies such as the ability to form a mental representation of the environment, also known as a cognitive map. It may be part of a syndrome known as visuospatial dysgnosia.

Social-emotional agnosia, also known as emotional agnosia or expressive agnosia, is the inability to perceive facial expressions, body language, and voice intonation. A person with this disorder is unable to non-verbally perceive others' emotions in social situations, limiting normal social interactions. The condition causes a functional blindness to subtle non-verbal social-emotional cues in voice, gesture, and facial expression. People with this form of agnosia have difficulty in determining and identifying the motivational and emotional significance of external social events, and may appear emotionless or agnostic. Symptoms of this agnosia can vary depending on the area of the brain affected. Social-emotional agnosia often occurs in individuals with schizophrenia and autism. It is difficult to distinguish from, and has been found to co-occur with, alexithymia.

Heterotopagnosia is a neuro-psychological syndrome caused by brain damage in the left parietal lobe and corresponding to an acquired inability in pointing at and locating another person's body parts. Its name comes from the Greek: "hetero" which means the other from a pair, "a" combined with "gnosis" means without knowledge, and "topos" means location. This clinical syndrome is distinct from autotopagnosia, another group of cognitive deficits associated with difficulties in locating body parts on own's one body. Allotopagnosia is another related disorder in which the patient cannot point at any external targets except his/her own body parts.

References

  1. 9. "Autotopagnosia." Mosby's Medical Dictionary, 2009. Volume 8. Last updated 2009. Accessed February 22, 2011. http://medical-dictionary.thefreedictionary.com/autotopagnosia
  2. Dorlands Medical Dictionary
  3. 1 2 3 4 5 Goldenberg, G (2000). "9. Disorders of Body Perception". In Farah, Martha J; Feinberg, Todd E (eds.). Patient-based approaches to cognitive neuroscience. Cambridge, Mass: MIT Press. pp. 110–111. ISBN   0-262-56123-9. OCLC   41712668.
  4. 1 2 3 4 5 6 Ogden, Jenni A. (2005). Fractured minds: a case-study approach to clinical neuropsychology. Oxford [Oxfordshire]: Oxford University Press. ISBN   0-19-517136-5. OCLC   488457821.
  5. Gainotti G, Caltagirone C, Carecchi A, Ibba A (1976). "[An experimental study of autotopagnosia (author's transl)]". Riv Patol Nerv Ment (in Italian). 97 (2): 94–114. PMID   195331.
  6. Levin, Harvey S. et al. "Chapter 5: Acalculia." Clinical Neuropsychology. Ed. Kenneth M. Heilman and Edward Valenstein. New York: Oxford University Press, 1993. Print.
  7. Benson, Frank. "Chapter 2: Aphasia." Clinical Neuropsychology. Ed. Kenneth M. Heilman and Edward Valenstein. New York: Oxford University Press, 1993. Print.
  8. G. Denes; Luigi Pizzamiglio (1999). Handbook of Clinical and Experimental Neuropsychology. Psychology Press. p. 192. ISBN   978-0-86377-542-0.
  9. 1 2 3 4 5 6 Felician O, Ceccaldi M, Didic M, Thinus-Blanc C, Poncet M (2003). "Pointing to body parts: a double dissociation study". Neuropsychologia. 41 (10): 1307–16. doi:10.1016/S0028-3932(03)00046-0. PMID   12757904. S2CID   22398035.
  10. Farah, Martha J. and Feinberg, Todd E. 'Patient-Based Approaches to Cognitive Neuroscience', 2nd Ed. The MIT Press, (c) 2005. 151-155.
  11. 1 2 3 4 5 6 Buxbaum LJ, Coslett HB (June 2001). "Specialised structural descriptions for human body parts: Evidence from autotopagnosia". Cogn Neuropsychol. 18 (4): 289–306. doi:10.1080/02643290126172. PMID   20945217. S2CID   9500453.
  12. 1 2 Denes G, Cappelletti JY, Zilli T, Dalla Porta F, Gallana A (2000). "A category-specific deficit of spatial representation: the case of autotopagnosia". Neuropsychologia. 38 (4): 345–50. doi:10.1016/s0028-3932(99)00101-3. PMID   10683386. S2CID   20240486.
  13. Ghadiali, Eric. "Agnosia". ACNR, 4(5), November/December, 2004: 18-20. The Walton Centre for Neurology and Neurosurgery, Liverpool. http://www.acnr.co.uk/pdfs/volume4issue5/v4i5cognitive.pdf
  14. Schwoebel J, Coslett HB, Buxbaum LJ (June 2001). "Compensatory coding of body part location in autotopagnosia: Evidence for extrinsic egocentric coding". Cogn Neuropsychol. 18 (4): 363–81. doi:10.1080/02643290126218. PMID   20945221. S2CID   5877734.
  15. 1 2 3 4 Semenza C (September 1988). "Impairment in localization of body parts following brain damage". Cortex. 24 (3): 443–9. doi: 10.1016/s0010-9452(88)80007-8 . ISSN   0010-9452. PMID   3191727.
  16. Guariglia C, Piccardi L, Puglisi Allegtra MC, Traballesi M (2002). "Is autotopoagnosia real? EC says yes. A case study". Neuropsychologia. 40 (10): 1774–8. doi:10.1016/S0028-3932(02)00013-1. PMID   11992662. S2CID   9404752.
  17. De Renzi, E.; Scotti, G. (1970). "Autotopagnosia: Fiction or Reality? Report of a Case". Archives of Neurology. 23 (3): 221–227. doi:10.1001/archneur.1970.00480270031005. ISSN   0003-9942. PMID   5456719.