Anomic aphasia

Last updated
Anomic aphasia
Other namesDysnomia, nominal aphasia
DTI Brain Tractographic Image A panal.jpg
Diffusion tensor imaging of the brain shows the right and left arcuate fasciculus (Raf & Laf). Also shown are the right and left superior longitudinal fasciculus (Rslf & Lslf), and tapetum of corpus callosum (Ta). Damage to the Laf is known to cause anomic aphasia.
Specialty Neurology, neuropsychology   OOjs UI icon edit-ltr-progressive.svg

Anomic aphasia (also known as dysnomia, nominal aphasia, and amnesic aphasia) is a mild, fluent type of aphasia where individuals have word retrieval failures and cannot express the words they want to say (particularly nouns and verbs). [1] By contrast, anomia is a deficit of expressive language, and a symptom of all forms of aphasia, but patients whose primary deficit is word retrieval are diagnosed with anomic aphasia. [2] Individuals with aphasia who display anomia can often describe an object in detail and maybe even use hand gestures to demonstrate how the object is used, but cannot find the appropriate word to name the object. [3] Patients with anomic aphasia have relatively preserved speech fluency, repetition, comprehension, and grammatical speech.

Contents

Types

Causes

Anomic aphasia occurring by itself may be caused by damage to almost anywhere in the left hemisphere and in some cases can be seen in instances of right hemisphere damage. [7] Anomia can be genetic or caused by damage to various parts of the parietal lobe or the temporal lobe of the brain due to traumatic injury, stroke, or a brain tumor. [8] While anomic aphasia is primarily caused by structural lesions, they may also originate in Alzheimer's disease (anomia may be the earliest language deficit in posterior cortical atrophy variant of Alzheimer's) or other neurodegenerative diseases. [7]

Although the main causes are not specifically known, many researchers have found other factors contributing to anomic aphasia. People with damage to the left hemisphere of the brain are more likely to have anomic aphasia. Broca's area, the speech production center in the brain, was linked to being the source for speech execution problems, with the use of functional magnetic resonance imaging (fMRI), now commonly used to study anomic patients. [9] Other experts believe that damage to Wernicke's area, which is the speech comprehension area of the brain, is connected to anomia because the patients cannot comprehend the words that they are hearing. [10]

Although many experts have believed that damage to Broca's area or Wernicke's area are the main causes of anomia, current studies have shown that damage in the left parietal lobe is the cause of anomic aphasia. [11] One study was conducted using a word repetition test as well as fMRI in order to see the highest level of activity as well as where the lesions are in the brain tissue. [11] Fridrikkson, et al. saw that damage to neither Broca's area nor Wernicke's area were the sole sources of anomia in the subjects. Therefore, the original anomia model, which theorized that damage occurred on the surface of the brain in the grey matter was debunked, and it was found that the damage was in the white matter deeper in the brain, on the left hemisphere. [11] More specifically, the damage was in a part of the nerve tract called the arcuate fasciculus, for which the mechanism of action is unknown, though it is known to connect the posterior (back) of the brain to the anterior (front) and vice versa. [12]

While anomic aphasia is associated with lesions throughout the left hemisphere, severe and isolated anomia has been considered a sign of deep temporal lobe or lateral temporo-occipital damage. Damage to these areas is seen in patients showing infarction limited to regions supplied by the dominant posterior cerebral artery (PCA) and is referred to as posterior cerebral artery syndrome. [13]

Diagnosis

The best way to see if anomic aphasia has developed is by using verbal and imaging tests. The combination seems to be most effective, since either test done alone may give false positives or false negatives. For example, the verbal test is used to see if a speech disorder presents, and whether the problem is in speech production or comprehension. Patients with Alzheimer's disease have speech problems linked to dementia or progressive aphasias, which can include anomia. [14] [15] The imaging test, mostly done using MRI scans, is ideal for lesion mapping or viewing deterioration in the brain. However, imaging cannot diagnose anomia on its own because the lesions may not be located deep enough to damage the white matter or the arcuate fasciculus. However, anomic aphasia is very difficult to associate with a specific lesion location in the brain. Therefore, the combination of speech tests and imaging tests has the highest sensitivity and specificity. [16]

Picture-naming tests, such as the Philadelphia Naming Test (PNT), are also utilized in diagnosing aphasias. Analysis of picture-naming is compared with reading, picture categorizing, and word categorizing. There is a considerable similarity among aphasia syndromes in terms of picture-naming behavior, however anomic aphasiacs produced the fewest phonemic errors and the most multiword circumlocutions. These results suggest minimal word-production difficulty in anomic aphasia relative to other aphasia syndromes. [17]

Anomic aphasia has been diagnosed in some studies using the Aachen Aphasia Test (AAT), which tests language functioning after brain injury. This test aims to: identify the presence of aphasia; provide a profile of the speaker's language functioning according to different language modalities (speaking, listening, reading, writing) and different levels of linguistic description (phonology, morphology, semantics, and syntax); give a measure of severity of any breakdown. [18] This test was administered to patients participating in a study in 2012, and researchers found that on the naming subtest of the AAT patients showed relevant naming difficulties and tended to substitute the words they could not produce with circumlocutions. [19]

The Western Aphasia Battery is another test that is conducted with the goal of classifying aphasia subtypes and rating the severity of the aphasiac impairment. The test is composed of four language and three performance domains. Syndrome classification is determined by the pattern of performance on the four language subtests, which assess spontaneous speech, comprehension, repetition, and naming. [20]

Doing a hearing test first is important, in case the patient cannot clearly hear the words or sentences needed in the speech repetition test. [21] In the speech tests, the person is asked to repeat a sentence with common words; if the person cannot identify the word, but he or she can describe it, then the person is highly likely to have anomic aphasia. However, to be completely sure, the test is given while a test subject is in an fMRI scanner, and the exact location of the lesions and areas activated by speech are pinpointed. [11] Few simpler or cheaper options are available, so lesion mapping and speech repetition tests are the main ways of diagnosing anomic aphasia.[ citation needed ]

Definition

Anomic aphasia (anomia) is a type of aphasia characterized by problems recalling words, names, and numbers. Speech is fluent and receptive language is not impaired in someone with anomic aphasia. [22] Subjects often use circumlocutions (speaking in a roundabout way) to avoid a name they cannot recall or to express a certain word they cannot remember. Sometimes, the subject can recall the name when given clues. Additionally, patients are able to speak with correct grammar; the main problem is finding the appropriate word to identify an object or person.[ citation needed ]

Sometimes, subjects may know what to do with an object, but still not be able to give a name to the object. For example, if a subject is shown an orange and asked what it is called, the subject may be well aware that the object can be peeled and eaten, and may even be able to demonstrate this by actions or even verbal responses; however, they cannot recall that the object is called an "orange". Sometimes, when a person with this condition is multilingual, they might confuse the language they are speaking in trying to find the right word (inadvertent code-switching).[ citation needed ]

Management

No method is available to completely cure anomic aphasia. However, treatments can help improve word-finding skills.

Although a person with anomia may find recalling many types of words to be difficult, such as common nouns, proper nouns, verbs, etc., many studies have shown that treatment for object words, or nouns, has shown promise in rehabilitation research. [21] The treatment includes visual aids, such as pictures, and the patient is asked to identify the object or activity. However, if that is not possible, then the patient is shown the same picture surrounded by words associated with the object or activity. [23] [24] Throughout the process, positive encouragement is provided. The treatment shows an increase in word finding during treatment; however, word identifying decreased two weeks after the rehabilitation period. [21] Therefore, it shows that rehabilitation effort needs to be continuous for word-finding abilities to improve from the baseline. The studies show that verbs are harder to recall or repeat, even with rehabilitation. [21] [25]

Other methods in treating anomic aphasia include circumlocution-induced naming therapy (CIN), wherein the patient uses circumlocution to assist with his or her naming rather than just being told to name the item pictured after given some sort of cue. Results suggest that the patient does better in properly naming objects when undergoing this therapy because CIN strengthens the weakened link between semantics and phonology for patients with anomia, since they often know what an object is used for, but cannot verbally name it. [26]

Anomia is often challenging for the families and friends of those affected by it. One way to overcome this is computer-based treatment models, effective especially when used with clinical therapy. Leemann et al. provided anomic patients with computerized-assisted therapy (CAT) sessions, along with traditional therapy sessions using treatment lists of words. Some of the patients received a drug known to help relieve symptoms of anomia (levodopa), while others received a placebo. The researchers found that the drug had no significant effects on improvement with the treatment lists, but almost all of the patients improved after the CAT sessions. They concluded that this form of computerized treatment is effective in increasing naming abilities in anomic patients. [27]

Additionally, one study researched the effects of using "excitatory (anodal) transcranial direct current stimulation" over the right temporoparietal cortex, a brain area that seems to correlate to language. The electrical stimulation seemed to enhance language training outcome in patients with chronic aphasia. [28]

Contextual repetition priming treatment is a technique which involves repeated repetition of names of pictures that are related semantically, phonologically, or are unrelated. Patients with impaired access to lexical-semantic representations show no long-term improvement in naming, but patients with good access to semantics show long-term benefits. [29]

Development of self-cueing strategies can also facilitate word retrieval. Patients identify core words that can be retrieved without struggle, and establish a relationship between cue words and words that begin with the same sound but cannot be retrieved. Patients then learn to use the cue word to facilitate word retrieval for the target object. [30]

Epidemiology

Many different populations can and do have anomia. For instance, deaf patients who have had a stroke can demonstrate semantic and phonological errors, much like hearing anomic patients. Researchers have called this subtype sign anomia. [31]

Multilingual patients typically experience anomia to a greater degree in just one of their fluent languages. However, evidence conflicts as to which language – first or second – is impacted more. [32] [33]

Research on children with anomia has indicated that children who undergo treatment are, for the most part, able to gain back normal language abilities, aided by brain plasticity. However, longitudinal research on children with anomic aphasia due to head injury shows that even several years after the injury, some signs of deficient word retrieval are still observed. These remaining symptoms can sometimes cause academic difficulties later on. [34]

Patients

This disorder may be extremely frustrating for people with and without the disorder. Although the persons with anomic aphasia may know the specific word, they may not be able to recall it and this can be very difficult for everyone in the conversation. Positive reinforcements are helpful. [21]

Although not many literary cases mention anomic aphasia, many nonfiction books have been written about living with aphasia. One of them is The Man Who Lost His Language by Sheila Hale. It is the story of Hale's husband, John Hale, a scholar who had had a stroke and lost speech formation abilities. In her book, Hale also explains the symptoms and mechanics behind aphasia and speech formation. She adds the emotional components of dealing with a person with aphasia and how to be patient with the speech and communication. [35] [36]

See also

Related Research Articles

<span class="mw-page-title-main">Aphasia</span> Inability to comprehend or formulate language

In aphasia, a person may be unable to comprehend or unable to formulate language because of damage to specific brain regions. The major causes are stroke and head trauma; prevalence is hard to determine but aphasia due to stroke is estimated to be 0.1–0.4% in the Global North. Aphasia can also be the result of brain tumors, epilepsy, brain damage and brain infections, or neurodegenerative diseases.

<span class="mw-page-title-main">Expressive aphasia</span> Language disorder involving inability to produce language

Expressive aphasia, also known as Broca's aphasia, is a type of aphasia characterized by partial loss of the ability to produce language, although comprehension generally remains intact. A person with expressive aphasia will exhibit effortful speech. Speech generally includes important content words but leaves out function words that have more grammatical significance than physical meaning, such as prepositions and articles. This is known as "telegraphic speech". The person's intended message may still be understood, but their sentence will not be grammatically correct. In very severe forms of expressive aphasia, a person may only speak using single word utterances. Typically, comprehension is mildly to moderately impaired in expressive aphasia due to difficulty understanding complex grammar.

<span class="mw-page-title-main">Receptive aphasia</span> Language disorder involving inability to understand language

Wernicke's aphasia, also known as receptive aphasia, sensory aphasia or posterior aphasia, is a type of aphasia in which individuals have difficulty understanding written and spoken language. Patients with Wernicke's aphasia demonstrate fluent speech, which is characterized by typical speech rate, intact syntactic abilities and effortless speech output. Writing often reflects speech in that it tends to lack content or meaning. In most cases, motor deficits do not occur in individuals with Wernicke's aphasia. Therefore, they may produce a large amount of speech without much meaning. Individuals with Wernicke's aphasia are typically unaware of their errors in speech and do not realize their speech may lack meaning. They typically remain unaware of even their most profound language deficits.

Aphasiology is the study of language impairment usually resulting from brain damage, due to neurovascular accident—hemorrhage, stroke—or associated with a variety of neurodegenerative diseases, including different types of dementia. These specific language deficits, termed aphasias, may be defined as impairments of language production or comprehension that cannot be attributed to trivial causes such as deafness or oral paralysis. A number of aphasias have been described, but two are best known: expressive aphasia and receptive aphasia.

Agraphia is an acquired neurological disorder causing a loss in the ability to communicate through writing, either due to some form of motor dysfunction or an inability to spell. The loss of writing ability may present with other language or neurological disorders; disorders appearing commonly with agraphia are alexia, aphasia, dysarthria, agnosia, acalculia and apraxia. The study of individuals with agraphia may provide more information about the pathways involved in writing, both language related and motoric. Agraphia cannot be directly treated, but individuals can learn techniques to help regain and rehabilitate some of their previous writing abilities. These techniques differ depending on the type of agraphia.

<span class="mw-page-title-main">Wernicke's area</span> Speech comprehension region in the dominant hemisphere of the hominid brain

Wernicke's area, also called Wernicke's speech area, is one of the two parts of the cerebral cortex that are linked to speech, the other being Broca's area. It is involved in the comprehension of written and spoken language, in contrast to Broca's area, which is primarily involved in the production of language. It is traditionally thought to reside in Brodmann area 22, which is located in the superior temporal gyrus in the dominant cerebral hemisphere, which is the left hemisphere in about 95% of right-handed individuals and 70% of left-handed individuals.

<span class="mw-page-title-main">Conduction aphasia</span> Medical condition

Conduction aphasia, also called associative aphasia, is an uncommon form of difficulty in speaking (aphasia). It is caused by damage to the parietal lobe of the brain. An acquired language disorder, it is characterised by intact auditory comprehension, coherent speech production, but poor speech repetition. Affected people are fully capable of understanding what they are hearing, but fail to encode phonological information for production. This deficit is load-sensitive as the person shows significant difficulty repeating phrases, particularly as the phrases increase in length and complexity and as they stumble over words they are attempting to pronounce. People have frequent errors during spontaneous speech, such as substituting or transposing sounds. They are also aware of their errors and will show significant difficulty correcting them.

<span class="mw-page-title-main">Global aphasia</span> Medical condition

Global aphasia is a severe form of nonfluent aphasia, caused by damage to the left side of the brain, that affects receptive and expressive language skills as well as auditory and visual comprehension. Acquired impairments of communicative abilities are present across all language modalities, impacting language production, comprehension, and repetition. Patients with global aphasia may be able to verbalize a few short utterances and use non-word neologisms, but their overall production ability is limited. Their ability to repeat words, utterances, or phrases is also affected. Due to the preservation of the right hemisphere, an individual with global aphasia may still be able to express themselves through facial expressions, gestures, and intonation. This type of aphasia often results from a large lesion of the left perisylvian cortex. The lesion is caused by an occlusion of the left middle cerebral artery and is associated with damage to Broca's area, Wernicke's area, and insular regions which are associated with aspects of language.

Transcortical sensory aphasia (TSA) is a kind of aphasia that involves damage to specific areas of the temporal lobe of the brain, resulting in symptoms such as poor auditory comprehension, relatively intact repetition, and fluent speech with semantic paraphasias present. TSA is a fluent aphasia similar to Wernicke's aphasia, with the exception of a strong ability to repeat words and phrases. The person may repeat questions rather than answer them ("echolalia").

<span class="mw-page-title-main">Associative visual agnosia</span> Medical condition

Associative visual agnosia is a form of visual agnosia. It is an impairment in recognition or assigning meaning to a stimulus that is accurately perceived and not associated with a generalized deficit in intelligence, memory, language or attention. The disorder appears to be very uncommon in a "pure" or uncomplicated form and is usually accompanied by other complex neuropsychological problems due to the nature of the etiology. Affected individuals can accurately distinguish the object, as demonstrated by the ability to draw a picture of it or categorize accurately, yet they are unable to identify the object, its features or its functions.

Transcortical motor aphasia (TMoA), also known as commissural dysphasia or white matter dysphasia, results from damage in the anterior superior frontal lobe of the language-dominant hemisphere. This damage is typically due to cerebrovascular accident (CVA). TMoA is generally characterized by reduced speech output, which is a result of dysfunction of the affected region of the brain. The left hemisphere is usually responsible for performing language functions, although left-handed individuals have been shown to perform language functions using either their left or right hemisphere depending on the individual. The anterior frontal lobes of the language-dominant hemisphere are essential for initiating and maintaining speech. Because of this, individuals with TMoA often present with difficulty in speech maintenance and initiation.

<span class="mw-page-title-main">Mixed transcortical aphasia</span>

Mixed transcortical aphasia is the least common of the three transcortical aphasias. This type of aphasia can also be referred to as "Isolation Aphasia". This type of aphasia is a result of damage that isolates the language areas from other brain regions. Broca's, Wernicke's, and the arcuate fasiculus are left intact; however, they are isolated from other brain regions.

Semantic dementia (SD), also known as semantic variant primary progressive aphasia (svPPA), is a progressive neurodegenerative disorder characterized by loss of semantic memory in both the verbal and non-verbal domains. However, the most common presenting symptoms are in the verbal domain. Semantic dementia is a disorder of semantic memory that causes patients to lose the ability to match words or images to their meanings. However, it is fairly rare for patients with semantic dementia to develop category specific impairments, though there have been documented cases of it occurring. Typically, a more generalized semantic impairment results from dimmed semantic representations in the brain.

<span class="mw-page-title-main">Primary progressive aphasia</span> Medical condition

Primary progressive aphasia (PPA) is a type of neurological syndrome in which language capabilities slowly and progressively become impaired. As with other types of aphasia, the symptoms that accompany PPA depend on what parts of the left hemisphere are significantly damaged. However, unlike most other aphasias, PPA results from continuous deterioration in brain tissue, which leads to early symptoms being far less detrimental than later symptoms.

Auditory verbal agnosia (AVA), also known as pure word deafness, is the inability to comprehend speech. Individuals with this disorder lose the ability to understand language, repeat words, and write from dictation. Some patients with AVA describe hearing spoken language as meaningless noise, often as though the person speaking was doing so in a foreign language. However, spontaneous speaking, reading, and writing are preserved. The maintenance of the ability to process non-speech auditory information, including music, also remains relatively more intact than spoken language comprehension. Individuals who exhibit pure word deafness are also still able to recognize non-verbal sounds. The ability to interpret language via lip reading, hand gestures, and context clues is preserved as well. Sometimes, this agnosia is preceded by cortical deafness; however, this is not always the case. Researchers have documented that in most patients exhibiting auditory verbal agnosia, the discrimination of consonants is more difficult than that of vowels, but as with most neurological disorders, there is variation among patients.

Paraphasia is a type of language output error commonly associated with aphasia, and characterized by the production of unintended syllables, words, or phrases during the effort to speak. Paraphasic errors are most common in patients with fluent forms of aphasia, and come in three forms: phonemic or literal, neologistic, and verbal. Paraphasias can affect metrical information, segmental information, number of syllables, or both. Some paraphasias preserve the meter without segmentation, and some do the opposite. However, most paraphasias affect both partially.

Auditory agnosia is a form of agnosia that manifests itself primarily in the inability to recognize or differentiate between sounds. It is not a defect of the ear or "hearing", but rather a neurological inability of the brain to process sound meaning. While auditory agnosia impairs the understanding of sounds, other abilities such as reading, writing, and speaking are not hindered. It is caused by bilateral damage to the anterior superior temporal gyrus, which is part of the auditory pathway responsible for sound recognition, the auditory "what" pathway.

Jargon aphasia is a type of fluent aphasia in which an individual's speech is incomprehensible, but appears to make sense to the individual. Persons experiencing this condition will either replace a desired word with another that sounds or looks like the original one, or has some other connection to it, or they will replace it with random sounds. Accordingly, persons with jargon aphasia often use neologisms, and may perseverate if they try to replace the words they can not find with sounds.

<span class="mw-page-title-main">Right hemisphere brain damage</span> Medical condition

Right hemisphere brain damage (RHD) is the result of injury to the right cerebral hemisphere. The right hemisphere of the brain coordinates tasks for functional communication, which include problem solving, memory, and reasoning. Deficits caused by right hemisphere brain damage vary depending on the location of the damage.

Semantic amnesia is a type of amnesia that affects semantic memory and is primarily manifested through difficulties with language use and acquisition, recall of facts and general knowledge. A patient with semantic amnesia would have damage to the temporal lobe.

References

  1. "Anomic Aphasia - National Aphasia Association". National Aphasia Association. Retrieved 2015-11-13.
  2. <Manasco, M. (2014). Chapter 7: Motor Speech Disorders: The Dysarthrias. In Introduction to neurogenic communication disorders . Burlington, MA: Jones & Barlett Learning.>
  3. <Manasco, M. H. (2014). Introduction to Neurogenic Communication Disorders. Burlington, MA: Jones & Bartlett Learning.>
  4. 1 2 3 4 Devinsky, Orrin; D'Esposito, Mark (2004). Neurology of Cognitive and Behavioral Disorders (21st ed.). pp.  194–196. ISBN   978-0-19-513764-4.
  5. Mattocks, Linda; Hynd, George W. (1986). "Color anomia: Clinical, developmental, and neuropathological issues". Developmental Neuropsychology. 2 (2): 101–112. doi:10.1080/87565648609540333. ISSN   8756-5641.
  6. 1 2 3 Benson, Frank (August 1991). "What's in a Name?". Mayo Clinic Proceedings. 66 (8): 865–7. doi:10.1016/S0025-6196(12)61206-3. PMID   1861557 . Retrieved 2019-12-04.
  7. 1 2 Swanberg, Margaret; Nasreddine, Ziad; Mendez, Mario; Cummings, Jeffrey (12 September 2007). Textbook of Clinical Neurology (3 ed.). Saunders. pp. 79–98. ISBN   9781416036180.
  8. Woollams, AM.; Cooper-Pye, E.; Hodges, JR.; Patterson, K. (Aug 2008). "Anomia: a doubly typical signature of semantic dementia". Neuropsychologia. 46 (10): 2503–14. doi:10.1016/j.neuropsychologia.2008.04.005. PMID   18499196. S2CID   10435463.
  9. Fridriksson J, Moser D, Ryalls J, Bonilha L, Rorden C, Baylis G (June 2009). "Modulation of frontal lobe speech areas associated with the production and perception of speech movements". J. Speech Lang. Hear. Res. 52 (3): 812–9. doi:10.1044/1092-4388(2008/06-0197). PMC   2693218 . PMID   18978212.
  10. Hamilton AC, Martin RC, Burton PC (December 2009). "Converging functional magnetic resonance imaging evidence for a role of the left inferior frontal lobe in semantic retention during language comprehension". Cogn Neuropsychol. 26 (8): 685–704. doi:10.1080/02643291003665688. PMID   20401770. S2CID   9409238.
  11. 1 2 3 4 Fridriksson J, Kjartansson O, Morgan PS, et al. (August 2010). "Impaired speech repetition and left parietal lobe damage". J. Neurosci. 30 (33): 11057–61. doi:10.1523/JNEUROSCI.1120-10.2010. PMC   2936270 . PMID   20720112.
  12. Anderson JM, Gilmore R, Roper S, et al. (October 1999). "Conduction aphasia and the arcuate fasciculus: A reexamination of the Wernicke-Geschwind model". Brain and Language. 70 (1): 1–12. doi:10.1006/brln.1999.2135. PMID   10534369. S2CID   12171982.
  13. Mohr, J.P.; Binder, Jeffrey (31 March 2011). Stroke (5th ed.). Saunders. p. 1520. ISBN   9781416054788.
  14. Rohrer JD, Knight WD, Warren JE, Fox NC, Rossor MN, Warren JD (January 2008). "Word-finding difficulty: a clinical analysis of the progressive aphasias". Brain. 131 (Pt 1): 8–38. doi:10.1093/brain/awm251. PMC   2373641 . PMID   17947337.
  15. Harciarek M, Kertesz A (September 2011). "Primary progressive aphasias and their contribution to the contemporary knowledge about the brain-language relationship". Neuropsychol Rev. 21 (3): 271–87. doi:10.1007/s11065-011-9175-9. PMC   3158975 . PMID   21809067.
  16. Healy EW, Moser DC, Morrow-Odom KL, Hall DA, Fridriksson J (April 2007). "Speech perception in MRI scanner noise by persons with aphasia" (PDF). J. Speech Lang. Hear. Res. 50 (2): 323–34. doi:10.1044/1092-4388(2007/023). PMID   17463232.
  17. Kohn, SE (1985). "Picture-naming in aphasia". Brain and Language. National Institutes of Health. 24 (2): 266–83. doi:10.1016/0093-934x(85)90135-x. PMID   3978406. S2CID   29075625.
  18. Miller, N; Willmes, K; De Bleser, R (2000). "The psychometric properties of the English language version of the Aachen Aphasia Test (EAAT)". Aphasiology . 14 (7): 683–722. doi:10.1080/026870300410946. S2CID   144512889.
  19. Andreetta, Sara; Cantagallo, Anna; Marini, Andrea (2012). "Narrative discourse in anomic aphasia". Neuropsychologia. 50 (8): 1787–93. doi:10.1016/j.neuropsychologia.2012.04.003. PMID   22564448. S2CID   17203842.
  20. Otfried, Spreen (1998). Acquired Aphasia (3 ed.). Elsevier Inc. pp. 71–156. ISBN   978-0-12-619322-0 . Retrieved 2019-12-04.
  21. 1 2 3 4 5 Wambaugh JL, Ferguson M (2007). "Application of semantic feature analysis to retrieval of action names in aphasia". J Rehabil Res Dev. 44 (3): 381–94. doi: 10.1682/JRRD.2006.05.0038 . PMID   18247235.
  22. Manasco, M. (2014). Chapter 4: The Aphasias. In Introduction to neurogenic communication disorders . Burlington, MA: Jones & Barlett Learning.
  23. Coelho, Carl A.; McHugh, Regina E.; Boyle, Mary (2000). "Semantic feature analysis as a treatment for aphasic dysnomia: A replication". Aphasiology. 14 (2): 133–142. doi:10.1080/026870300401513. ISSN   0268-7038. S2CID   143947547.
  24. Maher LM, Raymer AM (2004). "Management of anomia". Top Stroke Rehabil. 11 (1): 10–21. doi:10.1310/318R-RMD5-055J-PQ40. PMID   14872396. S2CID   40998077.
  25. Mätzig S, Druks J, Masterson J, Vigliocco G (June 2009). "Noun and verb differences in picture naming: past studies and new evidence". Cortex. 45 (6): 738–58. doi:10.1016/j.cortex.2008.10.003. PMID   19027106. S2CID   32070836.
  26. Francis, Dawn R.; Clark, Nina; Humphreys, Glyn W. (2002). "Circumlocution-induced naming (CIN): A treatment for effecting generalisation in anomia?". Aphasiology . 16 (3): 243–259. doi:10.1080/02687040143000564. S2CID   144118775.
  27. Leemann, B.; Laganaro, M.; Chetelat-Mabillard, D.; Schnider, A. (12 September 2010). "Crossover Trial of Subacute Computerized Aphasia Therapy for Anomia With the Addition of Either Levodopa or Placebo". Neurorehabilitation and Neural Repair. 25 (1): 43–47. doi:10.1177/1545968310376938. PMID   20834044. S2CID   42776933.
  28. Flöel, A.; Meinzer, M.; Kirstein, R.; Nijhof, S.; Deppe, M.; Knecht, S.; Breitenstein, C. (Jul 2011). "Short-term anomia training and electrical brain stimulation". Stroke. 42 (7): 2065–7. doi:10.1161/STROKEAHA.110.609032. PMID   21636820.
  29. Martin, N; Fink, R; Renvall, K; Laine, M (Nov 12, 2006). "Effectiveness of contextual repetition priming". Journal of the International Neuropsychological Society. 12 (6): 853–66. doi:10.1017/S1355617706061030. PMID   17064448. S2CID   22185628.
  30. Nickels, Lyndsey (1992). "The autocue? self-generated phonemic cues in the treatment of a disorder of reading and naming". Cognitive Neuropsychology. 9 (2): 155–182. doi:10.1080/02643299208252057.
  31. Atkinson, Marshall, J.; E. Smulovitch; A. Thacker; B. Woll (2004). "Aphasia in a user of British Sign Language: Dissociation between sign and gesture". Cognitive Neuropsychology. 21 (5): 537–554. doi:10.1080/02643290342000249. PMID   21038221. S2CID   27849117.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  32. Mendez, Mario F. (November 2001). "Language-Selective Anomia in a Bilingual Patient". The Journal of Neuropsychiatry and Clinical Neurosciences. 12 (4): 515–516. doi:10.1176/appi.neuropsych.12.4.515. PMID   11083172.
  33. Filley, Christopher M.; Ramsberger, Gail; Menn, Lise; Wu, Jiang; Reid, Bessie Y.; Reid, Allan L. (2006). "Primary Progressive Aphasia in a Bilingual Woman". Neurocase. 12 (5): 296–299. doi:10.1080/13554790601126047. PMID   17190751. S2CID   29408307.
  34. Van Hout, Anne (June 1992). "Acquired Aphasia in Children". Seminars in Pediatric Neurology. 4 (2): 102–108. CiteSeerX   10.1.1.973.1899 . doi:10.1016/s1071-9091(97)80026-5. PMID   9195667.
  35. Hale, Sheila. (2007). The man who lost his language : a case of aphasia. London; Philadelphia: Jessica Kingsley Publishers. ISBN   978-1-84310-564-0. OCLC   174143262.
  36. Anthony Campbell. "Book Review - THE MAN WHO LOST HIS LANGUAGE" . Retrieved 18 October 2013.