Balangeroite

Last updated
Balangeroite
Balangeroite.jpg
Balangeroite
General
Category Inosilicate
Formula
(repeating unit)
(Mg,Fe,Fe,Mn)42Si16O54(OH)40
IMA symbol Bal [1]
Strunz classification 9.DH.35
Crystal system Monoclinic
Crystal class Prismatic (2/m)
(same H-M symbol)
Space group P2/n
Unit cell a = 19.4 Å, b = 9.65 Å,
c = 19.4 Å; β = 91.1°; Z = 2
Identification
ColorBrown
Crystal habit Fibrous
Cleavage Very good in two directions
Tenacity Brittle
Luster Vitreous to greasy
Streak Brownish white
Diaphaneity Subtranslucent to opaque; transparent in thin section
Specific gravity 2.96 - 3.10
Optical propertiesBiaxial -
Refractive index nα = 1.680 nγ = 1.680
Birefringence δ = 0.000
Pleochroism Dark brown and yellow brown parallel and perpendicular to [001]
References [2] [3] [4]

Balangeroite is found in one of the most important chrysotile mines in Europe, the Balangero Serpentinite. Hence, it is usually mistaken as an asbestiform in an assemblage of other mineral phases like chrysotile, magnetite and Fe-Ni alloys. However, Balangeroite does not lead to serious health problems caused by asbestos fibers.

Contents

Introduction

Balangeroite is classified as an inosilicate with 4-periodic single chains, Si4O12. It is a completely separate mineral from true asbestos. It is economically important for providing building materials, especially for thermal insulation purposes, fireproofing, etc. [5] Recent publications by Turci [6] have drawn some conclusions that balangeroite was not asbestos and had poor ecopersistence and biopersistence. This study also pointed out that it was the obvious chrysotile exposures there, not balangeroite, that caused the incidence of mesotheliomas.

Composition

The chemical formula for balangeroite is (Mg, Fe2+, Fe3+, Mn2+)42Si16O54(OH)40 [7] and it has been calculated as shown in the diagram below by Compagnoni as follows:

Table 1a. Chemical analysis of balangeroite [7]
SiO228.37
TiO20.03
Al2O30.27
Fe2O38.89
Cr2O30.03
FeO16.95
MnO3.59
MgO31.81
CaO0.13
H2O9.93
Total100.00

Wet chemical, X-ray fluorescence and electron microprobe analyses were used to deduce the composition of balangeroite. [7] The common intergrowth with chrysotile proved to be valuable in providing better chemical resolution, as portrayed in Table 1. The results varied due to submicroscopic intergrowths or zoning. From the wet chemical analysis, there was 9.5% average weight loss after calcination at 1000 °C, due to the presence of water. [7] This was calculated as the difference from 100% of the microprobe results, with the assumption that large quantities of material usually contain some impurities, and the possible oxidation of Fe2+ under heating. [7] A ratio of Fe2+/Fe3+ = 2.12 was obtained, and on the basis of the known volume and density, the empirical formula for the unit cell was derived [7] (Mg 25.70 Fe2+7.69 Fe3+3.63 Mn2+1.65 Al0.17 Ca0.07 Cr0.01 Ti0.01) total = 38.93 Si15.38O53.66(OH)35.92.

Structure

Balangeroite is based on an octahedral build that consists of channels that are filled by chains of silicate tetrahedra grouped in three and 4 rows running along the fiber axis. [6] Balangeroite is isostructural to gageite. [7]

In contrast to chrysotile, however, balangeroite has more metal ions than silicon ions and might be in some cases seen as complex iron oxide containing some type of silicate structure in its framework. [6] The surrounding fluid takes in a large number of the cations which are octahedrally coordinated, which unlike amphiboles, may be easily removed. [6] As a consequence, the Mg and Fe are released forcing the silicate structure to become loosely bound and therefore pass into solution. [6] Further tests have been conducted on Balangeroite's ecopersistence and it showed fairly low eco-persistence at neutral pH. [6] Further studies were conducted by imitating weathering in an experiment to predict if weathered fibers retain the toxic potential present in freshly extracted fibers. [8] The tests proved that balangeroite showed the removal of Mg and Si, which shows continuous structural severance that extends far beyond the surface. [5]

Physical properties

Balangeroite can develop as loose fibers or be compact when in large volumes, which can be prismatic. [7] Antigorite flakes are included in relict prismatic balangeroite, while transmission electron microscopy observation shows that fibrous balangeroite is partially replaced by chrysotile. [9] The fibers run for a couple of centimeters in [001].

Geologic occurrences

The piemonte zone, remnant of the Piemontese Ocean from the Late Jurassic, is home to the majority of the serpentines of the Western Alps. The Balangero mine is located in the Lanzu Ultramafic Massif which is in the inner part of the piemonte zone. [9] The Lanzu Ultramafic Massif is believed to have been involved in the subduction processes that were affiliated with the closure of the Piemontese Ocean in the Late Jurassic. [9] The earliest generation of metamorphic veins and in particular type 1 Vein that constitute relict prismatic balangeroite (often includes antigorite flakes) were formed during prograde high pressure metamorphism. [9] Fibrous balangeroite is limited to the serpentine-infested rim of the northern Lanzu Ultramafic Massif, with its abundance in the inactive Balangero asbestos mine, where it was discovered. [9]

Balangeroite was named after the location in which it was discovered. [7] Mine workers at the Balangero mine had first discovered it and named it, based on its overall color and fibrous nature of other minerals present in the mine, xylotile or metaxite. [7] This new mineral, balangeroite, was tested and found to be completely different from xylotile and metaxite in composition as well as optical properties. [7] Balangeroite was already discovered and a somewhat pure specimen was in the Turin University Mineralogy institute's museum since 1925, inventory no. 14873, labeled as "fibrous serpentine (asbestos)- San Vittore, Balangero". [7]

Related Research Articles

<span class="mw-page-title-main">Mineral</span> Crystalline chemical element or compound formed by geologic processes

In geology and mineralogy, a mineral or mineral species is, broadly speaking, a solid substance with a fairly well-defined chemical composition and a specific crystal structure that occurs naturally in pure form.

<span class="mw-page-title-main">Serpentine subgroup</span> Group of phyllosilicate minerals

Serpentine subgroup are greenish, brownish, or spotted minerals commonly found in serpentinite. They are used as a source of magnesium and asbestos, and as decorative stone. The name comes from the greenish colour and smooth or scaly appearance from the Latin serpentinus, meaning "serpent rock".

<span class="mw-page-title-main">Chrysotile</span> The most commonly encountered form of asbestos

Chrysotile or white asbestos is the most commonly encountered form of asbestos, accounting for approximately 95% of the asbestos in the United States and a similar proportion in other countries. It is a soft, fibrous silicate mineral in the serpentine subgroup of phyllosilicates; as such, it is distinct from other asbestiform minerals in the amphibole group. Its idealized chemical formula is Mg3(Si2O5)(OH)4. The material has physical properties which make it desirable for inclusion in building materials, but poses serious health risks when dispersed into air and inhaled.

<span class="mw-page-title-main">Tremolite</span> Amphibole, double chain inosilicate mineral

Tremolite is a member of the amphibole group of silicate minerals with composition: Ca2(Mg5.0-4.5Fe2+0.0-0.5)Si8O22(OH)2. Tremolite forms by metamorphism of sediments rich in dolomite and quartz. Tremolite forms a series with actinolite and ferro-actinolite. Pure magnesium tremolite is creamy white, but the color grades to dark green with increasing iron content. It has a hardness on Mohs scale of 5 to 6. Nephrite, one of the two minerals of the gemstone jade, is a green variety of tremolite.

<span class="mw-page-title-main">Diopside</span> Pyroxene mineral

Diopside is a monoclinic pyroxene mineral with composition MgCaSi
2
O
6
. It forms complete solid solution series with hedenbergite and augite, and partial solid solutions with orthopyroxene and pigeonite. It forms variably colored, but typically dull green crystals in the monoclinic prismatic class. It has two distinct prismatic cleavages at 87 and 93° typical of the pyroxene series. It has a Mohs hardness of six, a Vickers hardness of 7.7 GPa at a load of 0.98 N, and a specific gravity of 3.25 to 3.55. It is transparent to translucent with indices of refraction of nα=1.663–1.699, nβ=1.671–1.705, and nγ=1.693–1.728. The optic angle is 58° to 63°.

<span class="mw-page-title-main">Riebeckite</span> Sodium-rich member of the amphibole group of silicate minerals

Riebeckite is a sodium-rich member of the amphibole group of silicate minerals, chemical formula Na2(Fe2+3Fe3+2)Si8O22(OH)2. It forms a solid solution series with magnesioriebeckite. It crystallizes in the monoclinic system, usually as long prismatic crystals showing a diamond-shaped cross section, but also in fibrous, bladed, acicular, columnar, and radiating forms. Its Mohs hardness is 5.0–6.0, and its specific gravity is 3.0–3.4. Cleavage is perfect, two directions in the shape of a diamond; fracture is uneven, splintery. It is often translucent to nearly opaque.

<span class="mw-page-title-main">Cummingtonite</span> Silicate mineral

Cummingtonite is a metamorphic amphibole with the chemical composition (Mg,Fe2+
)
2
(Mg,Fe2+
)
5
Si
8
O
22
(OH)
2
, magnesium iron silicate hydroxide.

<span class="mw-page-title-main">Serpentinite</span> Rock formed by hydration and metamorphic transformation of olivine

Serpentinite is a rock composed predominantly of one or more serpentine group minerals, the name originating from the similarity of the texture of the rock to that of the skin of a snake. Serpentinite has been called serpentine or serpentine rock, particularly in older geological texts and in wider cultural settings.

<span class="mw-page-title-main">Serpentinization</span> Formation of serpentinite by hydration and metamorphic transformation of olivine

Serpentinization is a hydration and metamorphic transformation of ferromagnesian minerals, such as olivine and pyroxene, in mafic and ultramafic rock to produce serpentinite. Minerals formed by serpentinization include the serpentine group minerals, brucite, talc, Ni-Fe alloys, and magnetite. The mineral alteration is particularly important at the sea floor at tectonic plate boundaries.

<span class="mw-page-title-main">Anthophyllite</span> Silicate amphibole mineral

Anthophyllite is an orthorhombic amphibole mineral: ☐Mg2Mg5Si8O22(OH)2 (☐ is for a vacancy, a point defect in the crystal structure), magnesium iron inosilicate hydroxide. Anthophyllite is polymorphic with cummingtonite. Some forms of anthophyllite are lamellar or fibrous and are classed as asbestos. The name is derived from the Latin word anthophyllum, meaning clove, an allusion to the most common color of the mineral. The Anthophyllite crystal is characterized by its perfect cleavage along directions 126 degrees and 54 degrees.

<span class="mw-page-title-main">Todorokite</span> Hydrous manganese oxide mineral

Todorokite is a complex hydrous manganese oxide mineral with generic chemical formula (Na,Ca,K,Ba,Sr)
1-x
(Mn,Mg,Al)
6
O
12
·3-4H
2
O
. It was named in 1934 for the type locality, the Todoroki mine, Hokkaido, Japan. It belongs to the prismatic class 2/m of the monoclinic crystal system, but the angle β between the a and c axes is close to 90°, making it seem orthorhombic. It is a brown to black mineral which occurs in massive or tuberose forms. It is quite soft with a Mohs hardness of 1.5, and a specific gravity of 3.49 - 3.82. It is a component of deep ocean basin manganese nodules.

Asbestiform is a crystal habit. It describes a mineral that grows in a fibrous aggregate of high tensile strength, flexible, long, and thin crystals that readily separate. The most common asbestiform mineral is chrysotile, commonly called "white asbestos", a magnesium phyllosilicate part of the serpentine group. Other asbestiform minerals include riebeckite, an amphibole whose fibrous form is known as crocidolite or "blue asbestos", and brown asbestos, a cummingtonite-grunerite solid solution series.

<span class="mw-page-title-main">Pumpellyite</span> Pumpellyite series

Pumpellyite is a group of closely related sorosilicate minerals:

<span class="mw-page-title-main">San Benito Mountain</span>

San Benito Mountain is the highest mountain in the Diablo Range of California. The summit is at an elevation of 5,267 feet (1,605 m). The rock is composed of asbestos (chrysotile), an ultramafic rock. It weathers to produce serpentine soils with characteristically low levels of nutrients like nitrogen, phosphorus, potassium, and calcium, and high levels of magnesium and heavy metals including nickel and chromium. This means little vegetation grows in the area though there are some plants that only grow on such soils like the local endemic San Benito evening primrose. The Clear Creek Management Area includes the San Benito Mountain Research Natural Area, recognized for its unique pine and incense cedar forest assemblage. The Mediterranean climate is punctuated by cool, wet winters and hot, dry summers.

<span class="mw-page-title-main">Asbestos</span> Carcinogenic fibrous silicate mineral

Asbestos is a naturally occurring fibrous silicate mineral. There are six types, all of which are composed of long and thin fibrous crystals, each fibre being composed of many microscopic "fibrils" that can be released into the atmosphere by abrasion and other processes. Inhalation of asbestos fibres can lead to various dangerous lung conditions, including mesothelioma, asbestosis, and lung cancer. As a result of these health effects, asbestos is considered a serious health and safety hazard.

<span class="mw-page-title-main">Zemannite</span>

Zemannite is a very rare oxide mineral with the chemical formula Mg0.5ZnFe3+[TeO3]3·4.5H2O. It crystallizes in the hexagonal crystal system and forms small prismatic brown crystals. Because of the rarity and small crystal size, zemannite has no applications and serves as a collector's item.

This list gives an overview of the classification of minerals (silicates) and includes mostly International Mineralogical Association (IMA) recognized minerals and its groupings. This list complements the List of minerals recognized by the International Mineralogical Association series of articles and List of minerals. Rocks, ores, mineral mixtures, non-IMA approved minerals and non-named minerals are mostly excluded.

<span class="mw-page-title-main">Lamprophyllite</span> Ti-silicate mineral

Lamprophyllite is a rare, but widespread mineral Ti-silicate mineral usually found in intrusive agpasitic igneous rocks. Yellow, reddish brown, Vitreous, Pearly.

Antigorite Monoclinic mineral

Antigorite is a lamellated, monoclinic mineral in the phyllosilicate serpentine subgroup with the ideal chemical formula of (Mg,Fe2+)3Si2O5(OH)4. It is the high-pressure polymorph of serpentine and is commonly found in metamorphosed serpentinites. Antigorite, and its serpentine polymorphs, play an important role in subduction zone dynamics due to their relative weakness and high weight percent of water (up to 13 weight % H2O). It is named after its type locality, the Geisspfad serpentinite, Valle Antigorio in the border region of Italy/Switzerland and is commonly used as a gemstone in jewelry and carvings.

<span class="mw-page-title-main">Lizardite</span> Magnesium phyllosilicate mineral of the serpentine group

Lizardite is a mineral from the serpentine subgroup with formula Mg3(Si2O5)(OH)4, and the most common type of mineral in the subgroup. It is also a member of the kaolinite-serpentine group.

References

  1. Warr, L.N. (2021). "IMA–CNMNC approved mineral symbols". Mineralogical Magazine. 85 (3): 291–320. Bibcode:2021MinM...85..291W. doi: 10.1180/mgm.2021.43 . S2CID   235729616.
  2. Mindat.org
  3. Webmineral.com
  4. Handbook of Mineralogy
  5. 1 2 Klein, Cornelius; Barbara Duttrow (2008). "19". In Ryan Flahive (ed.). The Manual of Mineral Science (23rd ed.). John Wiley & Sons, Inc. pp. 515–520. ISBN   978-0-471-72157-4.
  6. 1 2 3 4 5 6 Turci, Francesco; Tomatis M; Compagnoni R; et al. (2009). "The Role of Associated Mineral Fibers in Chrysotile Asbestos Health effects: The Case of Balangeroite". Annals of Occupational Hygiene. 53 (5): 491–497. doi: 10.1093/annhyg/mep028 . PMID   19435981.
  7. 1 2 3 4 5 6 7 8 9 10 11 12 Compagnoni, Roberto; Ferraris G; Fiora L (1983). "Balangeroite, a new fibrous silicate related to Gageite from Balangero, Italy". American Mineralogist. 68: 214–29.
  8. Favero-Longo, Sergio E; Turci F; Tomatis M; Compagnoni R; et al. (2009). "The Effects of Weathering on Ecopersistence, Reactivity, and Potential Toxicity of Naturally Occurring Asbestos and Asbestiform Minerals". Journal of Toxicology and Environmental Health, Part A . 68 (5): 305–313. doi:10.1080/15287390802529864. PMID   19184746. S2CID   25489486.
  9. 1 2 3 4 5 Groppo, C; Tomatis M; Turci F; et al. (2005). "The Potential Toxicity of Non-Regulated Asbestiform Minerals: Balangeroite from the Western Alps Part 1: Identification and Characterization". Journal of Toxicology and Environmental Health, Part A . 68 (1): 1–19. doi:10.1080/15287390590523867. PMID   15739801. S2CID   32736985.