Baumhauerite

Last updated
Baumhauerite
Baumhauerite-177525.jpg
Baumhauerite from Lengenbach Quarry, Im Feld, Binn Valley, Wallis, Switzerland
General
CategorySulfosalt mineral
Formula
(repeating unit)
Pb3As4S9
IMA symbol Bha [1]
Strunz classification 2.HC.05b
Crystal system Triclinic
Crystal class Pedial (1)
(same H-M symbol)
Space group P1
Identification
ColorGray-black to blue-gray
Twinning Polysynthetic, on [100]
Cleavage Perfect on [100]
Fracture Conchoidal
Mohs scale hardness3
Luster Metallic to dull
Streak chocolate brown
Specific gravity 5.33
References [2] [3] [4]

Baumhauerite (Pb3As4S9) is a rare lead sulfosalt mineral. It crystallizes in the triclinic system, is gray-black to blue-gray and its lustre is metallic to dull. Baumhauerite has a hardness of 3.

Baumhauerite occurs as small crystals embedded in dolomitic marble. It is found primarily in the Lengenbach Quarry, Binnental, in the Valais region of Switzerland, the mineral is named after German mineralogist Heinrich Adolph Baumhauer (1848–1926), who discovered it at Lengenbach, famous among mineralogists for its array of rare minerals, in 1902. Baumhauerite has also been reported at Sterling Hill, New Jersey, United States, typically in association with molybdenite, and in aggregates at Hemlo, Thunder Bay, Ontario, Canada.

See also

Related Research Articles

<span class="mw-page-title-main">Germanite</span> Rare copper iron germanium sulfide mineral

Germanite is a rare copper iron germanium sulfide mineral, Cu26Fe4Ge4S32. It was first discovered in 1922, and named for its germanium content. It is only a minor source of this important semiconductor element, which is mainly derived from the processing of the zinc sulfide mineral sphalerite. Germanite contains gallium, zinc, molybdenum, arsenic, and vanadium as impurities.

<span class="mw-page-title-main">Zoisite</span> Sorosilicate mineral

Zoisite, first known as saualpite, after its type locality, is a calcium aluminum hydroxy sorosilicate belonging to the epidote group of minerals. Its chemical formula is Ca2Al3(SiO4)(Si2O7)O(OH).

<span class="mw-page-title-main">Zinkenite</span> Sulfosalt mineral

Zinkenite is a steel-gray metallic sulfosalt mineral composed of lead antimony sulfide Pb9Sb22S42. Zinkenite occurs as acicular needle-like crystals.

<span class="mw-page-title-main">Adamite</span> Zinc arsenate hydroxide mineral

Adamite is a zinc arsenate hydroxide mineral, Zn2AsO4OH. It is a mineral that typically occurs in the oxidized or weathered zone above zinc ore occurrences. Pure adamite is colorless, but usually it possess yellow color due to Fe compounds admixture. Tints of green also occur and are connected with copper substitutions in the mineral structure. Olivenite is a copper arsenate that is isostructural with adamite and there is considerable substitution between zinc and copper resulting in an intermediate called cuproadamite. Zincolivenite is a recently discovered mineral being an intermediate mineral with formula CuZn(AsO4)(OH). Manganese, cobalt, and nickel also substitute in the structure. An analogous zinc phosphate, tarbuttite, is known.

<span class="mw-page-title-main">Abenakiite-(Ce)</span> Cyclosilicate mineral

Abenakiite-(Ce) is a mineral of sodium, cerium, neodymium, lanthanum, praseodymium, thorium, samarium, oxygen, sulfur, carbon, phosphorus, and silicon with a chemical formula Na26Ce6(SiO3)6(PO4)6(CO3)6(S4+O2)O. The silicate groups may be given as the cyclic Si6O18 grouping. The mineral is named after the Abenaki, an Algonquian Indian tribe of New England. Its Mohs scale rating is 4 to 5.

<span class="mw-page-title-main">Domeykite</span>

Domeykite is a copper arsenide mineral, Cu3As. It crystallizes in the isometric system, although crystals are very rare. It typically forms as irregular masses or botryoidal forms. It is an opaque, white to gray (weathers brassy) metallic mineral with a Mohs hardness of 3 to 3.5 and a specific gravity of 7.2 to 8.1.

<span class="mw-page-title-main">Xonotlite</span> Inosilicate mineral

Xonotlite, or eakleite, is a mineral of general formula Ca6Si6O17(OH)2 named by the German mineralogist Karl Friedrich August Rammelsberg in 1866. The name originates from its discovery locality, Tetela de Xonotla, Puebla, Mexico. Although it was discovered in 1866, it was first described in 1959. It is approved by the IMA, but it is a grandfathered species, meaning the name supposedly represents a valid species til this day.

<span class="mw-page-title-main">Hutchinsonite</span> Mineral

Hutchinsonite is a sulfosalt mineral of thallium, arsenic and lead with formula (Tl,Pb)2As5S9. Hutchinsonite is a rare hydrothermal mineral.

<span class="mw-page-title-main">Empressite</span> Telluric silver mineral

Empressite or tellursilberblende is a mineral form of silver telluride, AgTe. It is a rare, grey, orthorhombic mineral with which can form compact masses, rarely as bipyramidal crystals.

<span class="mw-page-title-main">Corderoite</span> Extremely rare mercury sulfide chloride mineral

Corderoite is an extremely rare mercury sulfide chloride mineral with formula Hg3S2Cl2. It crystallizes in the isometric crystal system. It is soft, 1.5 to 2 on the Mohs scale, and varies in color from light gray to black and rarely pink or yellow.

<span class="mw-page-title-main">Agrellite</span>

Agrellite (NaCa2Si4O10F) is a rare triclinic inosilicate mineral with four-periodic single chains of silica tetrahedra.

Alloclasite, or (Co,Fe)AsS, is a sulfosalt mineral. It is a member of the arsenopyrite group. Alloclasite crystallizes in the monoclinic system and typically forms as columnar to radiating acicular prismatic clusters. It is an opaque steel-gray to silver-white, with a metallic luster and a black streak. It is brittle with perfect cleavage, a Mohs hardness of 5 and a specific gravity of 5.91–5.95.

<span class="mw-page-title-main">Danalite</span> Iron beryllium silicate sulfide mineral

Danalite is an iron beryllium silicate sulfide mineral with formula: Fe2+4Be3(SiO4)3S.

Banalsite is a rare barium, sodium aluminium silicate mineral with formula: BaNa2Al4Si4O16. Banalsite is a tectosilicate of the feldspar group.

<span class="mw-page-title-main">Gabrielite</span> Sulfosalt mineral

Gabrielite is an extremely rare thallium sulfosalt mineral with a chemical formula of Tl6Ag3Cu6(As,Sb)9S21 or Tl2AgCu2As3S7.

<span class="mw-page-title-main">Abramovite</span>

Abramovite is a very rare mineral from the sulfides and sulfosalt categories. It has the chemical formula Pb2SnInBiS7. It occurs as tiny elongated lamellar-shaped crystals, up 1 mm × 0.2 mm in size, and is characterized by its non-commensurate structure.

<span class="mw-page-title-main">Ardaite</span> Very rare sulfosalt mineral

Ardaite is a very rare sulfosalt mineral with chemical formula Pb19Sb13S35Cl7 in the monoclinic crystal system, named after the Arda River, which passes through the type locality. It was discovered in 1978 and approved by the International Mineralogical Association in 1980. It was the second well-defined natural chlorosulfosalt, after dadsonite.

<span class="mw-page-title-main">Playfairite</span>

Playfairite is a rare sulfosalt mineral with chemical formula Pb16Sb18S43 in the monoclinic crystal system, named after the Scottish scientist and mathematician John Playfair. It was discovered in 1966 by the Canadian mineralogist John Leslie Jambor. Lead gray to black in color, its luster is metallic. Playfairite shows strong reflection pleochroism from white to brownish gray. Playfairite has a hardness of 3.5 to 4 on Mohs scale and a specific gravity of approximately 5.72.

<span class="mw-page-title-main">Sartorite</span> Lead arsenic sulfide

Sartorite is a lead arsenic sulfide with the chemical formula PbAs2S4 and as type locality the Lengenbach Quarry in Legenbach, Binnental, Valais, Switzerland. Historically, sartorite has been thought isomorphic to chalcostibite, emplectite, and zinckenite, but was definitively distinguished from the others in 1939.

<span class="mw-page-title-main">Minrecordite</span>

Minrecordite, CaZn(CO3)2, is a very rare mineral belonging to the dolomite group, the member with Ca and Zn. It was discovered, associated with dioptase, in a specimen from the Tsumeb mine (Namibia), which is consequently its type locality. Its name is a tribute to The Mineralogical Record magazine, representing the collaboration between professional and amateur mineralogists. In this locality it is associated primarily with dioptase, and less frequently with duftite, calcite and malachite. It is a rare mineral, which has been found only in a few deposits in the world. In addition to the type locality, it appears in the Preguiça mine, in Moura, district of Beja (Portugal).

References

  1. Warr, L.N. (2021). "IMA–CNMNC approved mineral symbols". Mineralogical Magazine. 85 (3): 291–320. Bibcode:2021MinM...85..291W. doi: 10.1180/mgm.2021.43 . S2CID   235729616.
  2. http://rruff.geo.arizona.edu/doclib/hom/baumhauerite.pdf Handbook of Mineralogy
  3. http://www.mindat.org/min-572.html Mindat
  4. http://webmineral.com/data/Baumhauerite.shtml Webmineral