Biorock

Last updated
Biorock forming on rebar in seawater in the presence of a small electric current to form an electrified reef Zoom on a Biorock structure.jpg
Biorock forming on rebar in seawater in the presence of a small electric current to form an electrified reef

Biorock (also seacrete [1] ) is a cement-like engineering material formed when a small electric current is passed between underwater metal electrodes placed in seawater causing dissolved minerals to accrete onto the cathode to form a thick layer of limestone. This 'accretion process' can be used to create building materials or to create artificial 'electrified reefs' for the benefit of corals and other sea-life. Discovered by Wolf Hilbertz in 1976, biorock was protected by patents and a trademark which have now expired.

Contents

History

During the 1970s Professor Wolf Hilbertz, an architect by training, was studying seashells and reefs at the School of Architecture at the University of Texas. He was thinking about how humans could emulate the way coral grow. After preliminary work in 1975, in 1976 he discovered that by passing electric currents through salt water, over time a thick layer of various materials including limestone deposited on the cathode. Later experiments showed that the coating could thicken at the rate of 5 cm per year for as long as current flows.

Hilbertz's original plan was to use this technology to grow low-cost structures in the ocean. He detailed his basic theory in a technical journal in 1979, [2] believing that the process should not be patented so that it could be commercially exploited by anyone. However, having been let down a number of times he incorporated a company, The Marine Resources Company, raised venture capital and filed a number of patents relating to biorock. [3] [4]

He dissolved Marine Resources Company in 1982 [5] as his focus shifted to creating artificial coral reefs (or electrified reefs) after meeting Thomas J. Goreau. Hilbertz formed a partnership with Goreau, who continued work coral reef restoration and biorock after Hilbertz' death in 2007.

Process

The chemical process that takes place on the cathode is as follows: Calcium carbonate (aragonite) combines with magnesium, chloride and hydroxyl ions to slowly accrete around the cathode coating it with a thick layer of material similar in composition to magnesium oxychloride cement. Over time cathodic protection replaces the negative chloride ion (Cl-) with dissolved bicarbonate (HCO3-) to harden the coating to a hydromagnesite-aragonite mixture with gaseous oxygen evolving through the porous structure. Compressive strength has been measured from 3,720 to 5,350  psi (25.6 to 36.9 MPa), comparable to the concrete used for sidewalks. [6] The material grows rapidly, strengthens with age and is self-repairing whilst power is applied. The process is one that emits carbon dioxide into the atmosphere rather than sequestering it. [7]

The electrical current, supplied by a low DC voltage (often <4 volts) at a low current, is required on a continuous, pulsed or intermittent basis which can therefore be generated nearby from a low-cost integrated renewable energy source such as a small floating solar panel array. One kilowatt hour of electricity accretes about 0.4 to 1.5 kilograms (0.9 to 3.3 lb) of biorock, depending on parameters such as depth, electric current, salinity and water temperature. [8] [9]

Electrified reef

A newly constructed electrified reef set up by Gili Eco Trust in Indonesia. Manta ray Biorock reef.jpg
A newly constructed electrified reef set up by Gili Eco Trust in Indonesia.

Electrified reefs can be constructed using the Biorock process which provides a substrate on which corals thrive, being very similar to that of a natural reef. The structural element of the reef can be constructed out of low-cost rebar metal on which the rock will form which can be created locally in a shape appropriate to the location and purpose. Power is supplied between this large metal structure (the cathode) and a much smaller anode. Coral also benefits from the electrified and oxygenated reef environment that forms around the cathode. High levels of dissolved oxygen makes it highly attractive to marine organisms, particularly fin fish.

Patents

Trademark

The term Biorock was protected by a trademark between 2000 and 2010, but can now be used without restriction. [10]

Related Research Articles

<span class="mw-page-title-main">Limestone</span> Type of sedimentary rock

Limestone is a type of carbonate sedimentary rock which is the main source of the material lime. It is composed mostly of the minerals calcite and aragonite, which are different crystal forms of CaCO3. Limestone forms when these minerals precipitate out of water containing dissolved calcium. This can take place through both biological and nonbiological processes, though biological processes, such as the accumulation of corals and shells in the sea, have likely been more important for the last 540 million years. Limestone often contains fossils which provide scientists with information on ancient environments and on the evolution of life.

<span class="mw-page-title-main">Atoll</span> Ring-shaped coral reef

An atoll is a ring-shaped island, including a coral rim that encircles a lagoon. There may be coral islands or cays on the rim. Atolls are located in warm tropical or subtropical parts of the oceans and seas where corals can develop. Most of the approximately 440 atolls in the world are in the Pacific Ocean.

<span class="mw-page-title-main">Coral</span> Marine invertebrates of the class Anthozoa

Corals are colonial marine invertebrates within the class Anthozoa of the phylum Cnidaria. They typically form compact colonies of many identical individual polyps. Coral species include the important reef builders that inhabit tropical oceans and secrete calcium carbonate to form a hard skeleton.

<span class="mw-page-title-main">Coral reef</span> Outcrop of rock in the sea formed by the growth and deposit of stony coral skeletons

A coral reef is an underwater ecosystem characterized by reef-building corals. Reefs are formed of colonies of coral polyps held together by calcium carbonate. Most coral reefs are built from stony corals, whose polyps cluster in groups.

<span class="mw-page-title-main">Reef</span> A shoal of rock, coral or other sufficiently coherent material, lying beneath the surface of water

A reef is a ridge or shoal of rock, coral or similar relatively stable material, lying beneath the surface of a natural body of water. Many reefs result from natural, abiotic (non-living) processes such as deposition of sand or wave erosion planing down rock outcrops. However, reefs such as the coral reefs of tropical waters are formed by biotic (living) processes, dominated by corals and coralline algae. Artificial reefs such as shipwrecks and other man-made underwater structures may occur intentionally or as the result of an accident, and are sometimes designed to increase the physical complexity of featureless sand bottoms to attract a more diverse range of organisms. Reefs are often quite near to the surface, but not all definitions require this.

<span class="mw-page-title-main">Dolomite (rock)</span> Sedimentary carbonate rock that contains a high percentage of the mineral dolomite

Dolomite (also known as dolomite rock, dolostone or dolomitic rock) is a sedimentary carbonate rock that contains a high percentage of the mineral dolomite, CaMg(CO3)2. It occurs widely, often in association with limestone and evaporites, though it is less abundant than limestone and rare in Cenozoic rock beds (beds less than about 66 million years in age). The first geologist to distinguish dolomite from limestone was Déodat Gratet de Dolomieu; a French mineralogist and geologist whom it is named after. He recognized and described the distinct characteristics of dolomite in the late 18th century, differentiating it from limestone.

<span class="mw-page-title-main">Artificial reef</span> Human-made underwater structure that functions as a reef

An artificial reef (AR) is a human-created freshwater or marine benthic structure. Typically built in areas with a generally featureless bottom to promote marine life, it may be intended to control erosion, protect coastal areas, block ship passage, block the use of trawling nets, support reef restoration, improve aquaculture, or enhance scuba diving and surfing. Early artificial reefs were built by the Persians and the Romans.

<span class="mw-page-title-main">Saya de Malha Bank</span> Submerged bank in Mauritius

The Saya de Malha Bank or Mesh Skirt Bank, is one of the largest submerged ocean banks in the world, a part of the vast undersea Mascarene Plateau.

<span class="mw-page-title-main">Carbonate rock</span> Class of sedimentary rock

Carbonate rocks are a class of sedimentary rocks composed primarily of carbonate minerals. The two major types are limestone, which is composed of calcite or aragonite (different crystal forms of CaCO3), and dolomite rock (also known as dolostone), which is composed of mineral dolomite (CaMg(CO3)2). They are usually classified based on texture and grain size. Importantly, carbonate rocks can exist as metamorphic and igneous rocks, too. When recrystallized carbonate rocks are metamorphosed, marble is created. Rare igneous carbonate rocks even exist as intrusive carbonatites and, even rarer, there exists volcanic carbonate lava.

<span class="mw-page-title-main">Ocean acidification</span> Climate change-induced decline of pH levels in the ocean

Ocean acidification is the decrease in the pH of the Earth's ocean. Between 1950 and 2020, the average pH of the ocean surface fell from approximately 8.15 to 8.05. Carbon dioxide emissions from human activities are the primary cause of ocean acidification, with atmospheric carbon dioxide levels exceeding 410 ppm. CO2 from the atmosphere is absorbed by the oceans. This produces carbonic acid which dissociates into a bicarbonate ion and a hydrogen ion. The presence of free hydrogen ions lowers the pH of the ocean, increasing acidity. Marine calcifying organisms, such as mollusks and corals, are especially vulnerable because they rely on calcium carbonate to build shells and skeletons.

<span class="mw-page-title-main">Calcareous</span> Adjective meaning mostly or partly composed of calcium carbonate

Calcareous is an adjective meaning "mostly or partly composed of calcium carbonate", in other words, containing lime or being chalky. The term is used in a wide variety of scientific disciplines.

<span class="mw-page-title-main">Coral island</span> Island formed from coral and associated material

A coral island is a type of island formed from coral detritus and associated organic material. It occurs in tropical and sub-tropical areas, typically as part of a coral reef which has grown to cover a far larger area under the sea. The term low island can be used to distinguish such islands from high islands, which are formed through volcanic action. Low islands are formed as a result of sedimentation upon a coral reef or of the uplifting of such islands.

<span class="mw-page-title-main">Wolf Hilbertz</span>

Wolf Hartmut Hilbertz was a German-born futurist architect, inventor, and marine scientist. Notable contributions to science include the discovery of artificial mineral accretetion / biorock and its use to create electrified reefs.

<span class="mw-page-title-main">Sponge reef</span>

Sponge reefs are reefs produced by sea sponges. All modern sponge reefs are formed by hexactinellid sponges, which have an endoskeleton made of silica spicules and are often referred to as "glass sponges", while historically the non-spiculed, calcite-skeletoned archaeocyathid and stromatoporoid sponges were the primariy reef-builders.

<span class="mw-page-title-main">Environmental issues with coral reefs</span> Factors which adversely affect tropical coral reefs

Human activities have substantial impact on coral reefs, contributing to their worldwide decline.[1] Damaging activities encompass coral mining, pollution, overfishing, blast fishing, as well as the excavation of canals and access points to islands and bays. Additional threats comprise disease, destructive fishing practices, and the warming of oceans.[2] Furthermore, the ocean's function as a carbon dioxide sink, alterations in the atmosphere, ultraviolet light, ocean acidification, viral infections, the repercussions of dust storms transporting agents to distant reefs, pollutants, and algal blooms represent some of the factors exerting influence on coral reefs. Importantly, the jeopardy faced by coral reefs extends far beyond coastal regions. The ramifications of climate change, notably global warming, induce an elevation in ocean temperatures that triggers coral bleaching—a potentially lethal phenomenon for coral ecosystems.

<span class="mw-page-title-main">Marine habitat</span> Habitat that supports marine life

A marine habitat is a habitat that supports marine life. Marine life depends in some way on the saltwater that is in the sea. A habitat is an ecological or environmental area inhabited by one or more living species. The marine environment supports many kinds of these habitats.

<span class="mw-page-title-main">Marine biogenic calcification</span> Shell formation mechanism

Marine biogenic calcification is the process by which marine organisms such as oysters and clams form calcium carbonate. Seawater is full of dissolved compounds, ions and nutrients that organisms can use for energy and, in the case of calcification, to build shells and outer structures. Calcifying organisms in the ocean include molluscs, foraminifera, coccolithophores, crustaceans, echinoderms such as sea urchins, and corals. The shells and skeletons produced from calcification have important functions for the physiology and ecology of the organisms that create them.

<span class="mw-page-title-main">Calcium cycle</span>

The calcium cycle is a transfer of calcium between dissolved and solid phases. There is a continuous supply of calcium ions into waterways from rocks, organisms, and soils. Calcium ions are consumed and removed from aqueous environments as they react to form insoluble structures such as calcium carbonate and calcium silicate, which can deposit to form sediments or the exoskeletons of organisms. Calcium ions can also be utilized biologically, as calcium is essential to biological functions such as the production of bones and teeth or cellular function. The calcium cycle is a common thread between terrestrial, marine, geological, and biological processes. Calcium moves through these different media as it cycles throughout the Earth. The marine calcium cycle is affected by changing atmospheric carbon dioxide due to ocean acidification.

<span class="mw-page-title-main">Electrified reef</span> Human-created underwater structure

An electric reef is an artificial reef made from biorock, being limestone that forms rapidly in seawater on a metal structure from dissolved minerals in the presence of a small electric current. The first reefs of this type were created by Wolf Hilbertz and Thomas J. Goreau in the 1980s. By 2011 there were examples in over 20 countries.

References

  1. "Thermal, moisture and mechanical properties of Seacrete: A sustainable sea-grown building material". Researchgate. October 2020.
  2. Hilbertz, W. H, et al., "Electrodeposition of Minerals in Sea Water: Experiments and Applications", IEEE, Journal of Oceanic Engineering, Vol. 4, No. 3, pp. 94–113, July 1979
  3. "'Growing' buildings in seawater". Christian Science Monitor. 21 April 1980. Underwater accretion could prove an inexpensive way to protect and reinforce underwater pilings at port facilities, and even mend cracks in steel-reinforced concrete. It could be used to build breakwaters and ship mooring facilities. Mr. Hilbertz also envisions growing building components underwater for on-land construction, as well as creating some fully formed structures with simple designs
  4. "Grow Buildings: Underwater Building Through Mineral Accretion". Mother Earth News. March 1980.
  5. "Marine Resources Company". Open Corporates.
  6. Hilbertz, W. H.; et al. (July 1979). "Electrodeposition of minerals in sea water: Experiments and applications". Journal of Oceanic Engineering. 4 (3): 94–113. Bibcode:1979IJOE....4...94H. doi:10.1109/JOE.1979.1145428.
  7. "FAQ". Global Coral Reef Aliance. Retrieved 5 January 2021. Is limestone (or Biorock) an atmospheric CO2 sink. No! It is a source. This is a complex issue which seems seductively but misleadingly simple, and which so many people have gone astray on. It seems intuitively obvious that since limestone deposition is removing dissolved inorganic carbon from the ocean, that this should be compensated by one molecule of atmospheric CO2 dissolving in the ocean, but in fact the opposite happens. The reason is that there is much more dissolved inorganic carbon in the ocean, in the form of bicarbonate ion, than there is CO2 in the atmosphere, and the ocean is a pH buffered system.
  8. Ortega, Alvaro (1989). "Basic Technology: Mineral Accretion for Shelter. Seawater as a Source for Building" (PDF). MIMAR Architecture in Development. 32: 60–63.
  9. Balbosa, Enrique Amat (1994). "Estudio preliminar de la acrecion marina". Revista Arquitectura y Urbanismo. 15 (243).
  10. "BIOROCK - Trademark Details". Justia Trademarks.

Published works