Bis(benzonitrile)palladium dichloride

Last updated
Bis(benzonitrile)palladium dichloride
PdCl2(PhCN)2.png
(PhCN)2PdCl2-from-xtal-3D-bs-17.png
Names
Other names
palladium dichloride sis(benzonitrile), bis(benzonitrile)dichloropalladium
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.034.608 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 238-085-3
PubChem CID
  • InChI=1S/2C7H5N.2ClH.Pd/c2*8-6-7-4-2-1-3-5-7;;;/h2*1-5H;2*1H;/q;;;;+2/p-2
    Key: WXNOJTUTEXAZLD-UHFFFAOYSA-L
  • ionic form:C1=CC=C(C=C1)C#N.C1=CC=C(C=C1)C#N.Cl[Pd]Cl
  • coordination form:Cl[Pd-2](Cl)([N+]#Cc0ccccc0)[N+]#Cc0ccccc0
Properties
C14H10Cl2N2Pd
Molar mass 383.57 g·mol−1
Appearanceyellow-brown
Melting point 129–130 °C (264–266 °F; 402–403 K)
Hazards
GHS labelling:
GHS-pictogram-skull.svg GHS-pictogram-exclam.svg
Danger
H301, H311, H330
P260, P261, P264, P270, P271, P273, P280, P284, P301+P310, P301+P312, P302+P352, P304+P312, P304+P340, P305+P351+P338, P310, P311, P312, P320, P321, P322, P330, P332+P313, P337+P313, P361, P362, P363, P403+P233, P405, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Bis(benzonitrile)palladium dichloride is the coordination complex with the formula PdCl2(NCC6H5)2. It is the adduct of two benzonitrile (PhCN) ligands with palladium(II) chloride. It is a yellow-brown solid that is soluble in organic solvents. The compound is a reagent and a precatalyst for reactions that require soluble Pd(II). [1] A closely related compound is bis(acetonitrile)palladium dichloride.

The complex is prepared by dissolving PdCl2 in warm benzonitrile. [2] The PhCN ligands are labile, and the complex reverts to PdCl2 in noncoordinating solvents. According to X-ray crystallography, the two PhCN ligands are mutually trans. [3]

Sample of PdCl2(PhCN)2 Sample of PdCl2(PhCN)2.jpg
Sample of PdCl2(PhCN)2

Related Research Articles

Benzonitrile is the chemical compound with the formula C6H5(CN), abbreviated PhCN. This aromatic organic compound is a colorless liquid with a sweet bitter almond odour. It is mainly used as a precursor to the resin benzoguanamine.

<span class="mw-page-title-main">Zinc chloride</span> Chemical compound

Zinc chloride is an inorganic chemical compound with the formula ZnCl2·nH2O, with n ranging from 0 to 4.5, forming hydrates. Zinc chloride, anhydrous and its hydrates, are colorless or white crystalline solids, and are highly soluble in water. Five hydrates of zinc chloride are known, as well as four forms of anhydrous zinc chloride.

<span class="mw-page-title-main">Copper(II) chloride</span> Chemical compound

Copper(II) chloride, also known as cupric chloride, is an inorganic compound with the chemical formula CuCl2. The monoclinic yellowish-brown anhydrous form slowly absorbs moisture to form the orthorhombic blue-green dihydrate CuCl2·2H2O, with two water molecules of hydration. It is industrially produced for use as a co-catalyst in the Wacker process.

Iron(II) chloride, also known as ferrous chloride, is the chemical compound of formula FeCl2. It is a paramagnetic solid with a high melting point. The compound is white, but typical samples are often off-white. FeCl2 crystallizes from water as the greenish tetrahydrate, which is the form that is most commonly encountered in commerce and the laboratory. There is also a dihydrate. The compound is highly soluble in water, giving pale green solutions.

<span class="mw-page-title-main">Triphenylphosphine</span> Chemical compound

Triphenylphosphine (IUPAC name: triphenylphosphane) is a common organophosphorus compound with the formula P(C6H5)3 and often abbreviated to PPh3 or Ph3P. It is versatile compound that is widely used as a reagent in organic synthesis and as a ligand for transition metal complexes, including ones that serve as catalysts in organometallic chemistry. PPh3 exists as relatively air stable, colorless crystals at room temperature. It dissolves in non-polar organic solvents such as benzene and diethyl ether.

<span class="mw-page-title-main">Palladium(II) chloride</span> Chemical compound

Palladium(II) chloride, also known as palladium dichloride and palladous chloride, are the chemical compounds with the formula PdCl2. PdCl2 is a common starting material in palladium chemistry – palladium-based catalysts are of particular value in organic synthesis. It is prepared by the reaction of chlorine with palladium metal at high temperatures.

<span class="mw-page-title-main">Titanocene dichloride</span> Chemical compound

Titanocene dichloride is the organotitanium compound with the formula (η5-C5H5)2TiCl2, commonly abbreviated as Cp2TiCl2. This metallocene is a common reagent in organometallic and organic synthesis. It exists as a bright red solid that slowly hydrolyzes in air. It shows antitumour activity and was the first non-platinum complex to undergo clinical trials as a chemotherapy drug.

<span class="mw-page-title-main">Sulfur tetrafluoride</span> Chemical compound

Sulfur tetrafluoride is a chemical compound with the formula SF4. It is a colorless corrosive gas that releases dangerous hydrogen fluoride gas upon exposure to water or moisture. Sulfur tetrafluoride is a useful reagent for the preparation of organofluorine compounds, some of which are important in the pharmaceutical and specialty chemical industries.

<span class="mw-page-title-main">1,1'-Bis(diphenylphosphino)ferrocene</span> Chemical compound

1,1-Bis(diphenylphosphino)ferrocene, commonly abbreviated dppf, is an organophosphorus compound commonly used as a ligand in homogeneous catalysis. It contains a ferrocene moiety in its backbone, and is related to other bridged diphosphines such as 1,2-bis(diphenylphosphino)ethane (dppe).

<span class="mw-page-title-main">Bis(triphenylphosphine)palladium chloride</span> Chemical compound

Bis(triphenylphosphine)palladium chloride is a coordination compound of palladium containing two triphenylphosphine and two chloride ligands. It is a yellow solid that is soluble in some organic solvents. It is used for palladium-catalyzed coupling reactions, e.g. the Sonogashira–Hagihara reaction. The complex is square planar. Many analogous complexes are known with different phosphine ligands.

<span class="mw-page-title-main">Sodium tetrachloropalladate</span> Chemical compound

Sodium tetrachloropalladate is an inorganic compound with the chemical formula Na2PdCl4. This salt, and the analogous alkali metal salts of the form M2PdCl4, may be prepared simply by reacting palladium(II) chloride with the appropriate alkali metal chloride in aqueous solution. Palladium(II) chloride is insoluble in water, whereas the product dissolves:

<span class="mw-page-title-main">Bis(acetonitrile)palladium dichloride</span> Chemical compound

Bis(acetonitrile)palladium dichloride is the coordination complex with the formula PdCl2(NCCH3)2. It is the adduct of two acetonitrile ligands with palladium(II) chloride. It is a yellow-brown solid that is soluble in organic solvents. The compound is a reagent and a catalyst for reactions that require soluble Pd(II). The compound is similar to bis(benzonitrile)palladium dichloride. It reacts with 1,5-cyclooctadiene to give dichloro(1,5-cyclooctadiene)palladium.

Metal acetylacetonates are coordination complexes derived from the acetylacetonate anion (CH
3
COCHCOCH
3
) and metal ions, usually transition metals. The bidentate ligand acetylacetonate is often abbreviated acac. Typically both oxygen atoms bind to the metal to form a six-membered chelate ring. The simplest complexes have the formula M(acac)3 and M(acac)2. Mixed-ligand complexes, e.g. VO(acac)2, are also numerous. Variations of acetylacetonate have also been developed with myriad substituents in place of methyl (RCOCHCOR). Many such complexes are soluble in organic solvents, in contrast to the related metal halides. Because of these properties, acac complexes are sometimes used as catalyst precursors and reagents. Applications include their use as NMR "shift reagents" and as catalysts for organic synthesis, and precursors to industrial hydroformylation catalysts. C
5
H
7
O
2
in some cases also binds to metals through the central carbon atom; this bonding mode is more common for the third-row transition metals such as platinum(II) and iridium(III).

<span class="mw-page-title-main">Metal halides</span>

Metal halides are compounds between metals and halogens. Some, such as sodium chloride are ionic, while others are covalently bonded. A few metal halides are discrete molecules, such as uranium hexafluoride, but most adopt polymeric structures, such as palladium chloride.

<span class="mw-page-title-main">Metal-phosphine complex</span>

A metal-phosphine complex is a coordination complex containing one or more phosphine ligands. Almost always, the phosphine is an organophosphine of the type R3P (R = alkyl, aryl). Metal phosphine complexes are useful in homogeneous catalysis. Prominent examples of metal phosphine complexes include Wilkinson's catalyst (Rh(PPh3)3Cl), Grubbs' catalyst, and tetrakis(triphenylphosphine)palladium(0).

<span class="mw-page-title-main">Transition-metal allyl complex</span>

Transition-metal allyl complexes are coordination complexes with allyl and its derivatives as ligands. Allyl is the radical with the connectivity CH2CHCH2, although as a ligand it is usually viewed as an allyl anion CH2=CH−CH2, which is usually described as two equivalent resonance structures.

<span class="mw-page-title-main">Transition metal nitrile complexes</span> Class of coordination compounds containing nitrile ligands (coordinating via N)

Transition metal nitrile complexes are coordination compounds containing nitrile ligands. Because nitriles are weakly basic, the nitrile ligands in these complexes are often labile.

<span class="mw-page-title-main">Dichloro(1,5-cyclooctadiene)palladium</span> Chemical compound

Dichloro(1,5-cyclooctadiene)palladium is the organopalladium compound with the formula PdCl2(C8H12) where C8H12 is cycloocta-1,5-diene (cod) or abbreviated PdCl2(cod). It is a yellow solid that is soluble in chloroform. According to X-ray crystallography, the Pd center is square planar. This complex can be synthesized by reaction of tetrachloropalladate in hydrochloric acid with cycloocta-1,5-diene.

<span class="mw-page-title-main">(Benzene)ruthenium dichloride dimer</span> Chemical compound

(Benzene)ruthenium dichloride dimer is the organoruthenium compound with the formula [(C6H6)RuCl2]2. This red-coloured, diamagnetic solid is a reagent in organometallic chemistry and homogeneous catalysis.

Palladium forms a variety of ionic, coordination, and organopalladium compounds, typically with oxidation state Pd0 or Pd2+. Palladium(III) compounds have also been reported. Palladium compounds are frequently used as catalysts in cross-coupling reactions such as the Sonogashira coupling and Suzuki reaction.

References

  1. Jiro Tsuji; Hao Guo; Shengming Ma; Daniela Sustac Roman (2015). "Bis(benzonitrile)dichloropalladium(II)". e-EROS Encyclopedia of Reagents for Organic Synthesis. pp. 1–27. doi:10.1002/047084289X.rb101.pub3. ISBN   978-0-470-84289-8.
  2. Gordon K. Anderson; Minren Lin (2007). "Bis(Benzonitrile)Dichloro Complexes of Palladium and Platinum". Inorganic Syntheses. Vol. 28. pp. 60–63. doi:10.1002/9780470132593.ch13. ISBN   978-0-470-13259-3.{{cite book}}: |journal= ignored (help)
  3. Olmstead, M. M.; Wei, P.-P.; Ginwalla, A. S.; Balch, A. L. (2000). "Bis(Benzonitrile)Palladium(II) Dihalides: Structures and Cocrystallization of the Cubic Cluster Pd6Cl12 with (E)-Stilbene and with Bis(Benzonitrile)Palladium(II) Dichloride". Inorganic Chemistry. 39 (20): 4555–4559. doi:10.1021/ic0000597.