Brevianamide

Last updated
Brevianamide
Brevianamide A.svg
Brevianamide A
Brevianamide B.svg
Brevianamide B
Names
IUPAC names
Brevianamide A: (2R,5aR,8aS,9aR)-8,8-Dimethyl-2,3,8a,9-tetrahydrospiro[5a,9a-(epiminomethano)cyclopenta[f]indolizine-7,2'-indoline]-3',5,10(1H,6H,8H)-trione
Brevianamide B: (2S,5aR,8aS,9aR)-8,8-Dimethyl-2,3,8a,9-tetrahydrospiro[5a,9a-(epiminomethano)cyclopenta[f]indolizine-7,2'-indoline]-3',5,10(1H,6H,8H)-trione
Other names
Brevianamid A; Brevianamid B
Identifiers
3D model (JSmol)
ChemSpider
PubChem CID
UNII
  • (Brevianamid A):O=C1[C@@]2(NC3=O)C[C@@]4(C(C)(C)[C@]2([H])C[C@]53N1CCC5)C(C6=CC=CC=C6N4)=O
  • (Brevianamid B):O=C1[C@@]2(NC3=O)C[C@]4(C(C)(C)[C@]2([H])C[C@]53N1CCC5)C(C6=CC=CC=C6N4)=O
Properties
C21H23N3O3
Molar mass 365.433 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Brevianamides are indole alkaloids that belong to a class of naturally occurring 2,5-diketopiperazines [1] produced as secondary metabolites of fungi in the genus Penicillium and Aspergillus . [2] Structurally similar to paraherquamides, they are a small class compounds that contain a bicyclo[2.2.2]diazoctane ring system. [3] One of the major secondary metabolites in Penicillium spores, they are responsible for inflammatory response in lung cells. [4]

Contents

History

Originally isolated from Pennicillum compactum in 1969, brevianamide A has shown insecticidal activity. [2] [5] Further studies showed that a minor secondary metabolite, brevianamide B, has an epimeric center at the spiro-indoxyl quaternary center. Both were found to fluoresce under long-wave ultraviolet radiation. Furthermore, under irradaton, brevianamide A has been shown to isomerize to brevianamide B.

Biosynthesis

While the biosynthesis has not been conclusively elucidated, brevianamide A and B are constructed from tryptophan, proline, and an isoprene unit. [6]

Total synthesis

The total synthesis of several brevianamides have been reported, for brevianamide-B [7] and for brevianamide-E. [8] [9] [10]

Biological activity

Tests for antibiotic effectiveness against E. coli, A. fecalis, B. subtilis, S. aureus, and P. aeruginosa were negative. Also, no inhibitory action was shown against A. niger, A. flavis, P. crustosum, F. graminearum, F. moniliforme, Alternara sp., and Cladosporium sp. However, some insecticidal activity has been shown in one study, possibly showing some use as an insecticide for food crops. [2] In mammalian (mice lung cell) studies, brevianamide A has shown to induce cytoxicity in cells. [4] Furthermore, ELISA assays showed elevated levels of tumor necrosis factor-alpha (TNF-A), macrophage inflammatory protein-2 (MIP-2), and interleukin 6 (IL-6). Therefore, brevianamide A may not be a suitable insecticide in food crops.

See also

Related Research Articles

The Pictet–Spengler reaction is a chemical reaction in which a β-arylethylamine undergoes condensation with an aldehyde or ketone followed by ring closure. The reaction was first discovered in 1911 by Amé Pictet and Theodor Spengler. Traditionally an acidic catalyst in protic solvent was employed with heating, however the reaction has been shown to work in aprotic media in superior yields and sometimes without acid catalysis. The Pictet–Spengler reaction can be considered a special case of the Mannich reaction, which follows a similar reaction pathway. The driving force for this reaction is the electrophilicity of the iminium ion generated from the condensation of the aldehyde and amine under acid conditions. This explains the need for an acid catalyst in most cases, as the imine is not electrophilic enough for ring closure but the iminium ion is capable of undergoing the reaction.

<span class="mw-page-title-main">Indole-3-acetic acid</span> Chemical compound

Indole-3-acetic acid is the most common naturally occurring plant hormone of the auxin class. It is the best known of the auxins, and has been the subject of extensive studies by plant physiologists. IAA is a derivative of indole, containing a carboxymethyl substituent. It is a colorless solid that is soluble in polar organic solvents.

<span class="mw-page-title-main">Cyclopiazonic acid</span> Chemical compound

Cyclopiazonic acid (α-CPA), a mycotoxin and a fungal neurotoxin, is made by the molds Aspergillus and Penicillium. It is an indole-tetramic acid that serves as a toxin due to its ability to inhibit calcium-dependent ATPases found in the endoplasmic and sarcoplasmic reticulum. This inhibition disrupts the muscle contraction-relaxation cycle and the calcium gradient that is maintained for proper cellular activity in cells.

<span class="mw-page-title-main">Lisofylline</span> Chemical compound

Lisofylline (LSF) is a synthetic small molecule with novel anti-inflammatory properties. LSF can effectively prevent type 1 diabetes in preclinical models and improves the function and viability of isolated or transplanted pancreatic islets. It is a metabolite of pentoxifylline.

<span class="mw-page-title-main">Gliotoxin</span> Chemical compound

Gliotoxin is a sulfur-containing mycotoxin that belongs to a class of naturally occurring 2,5-diketopiperazines produced by several species of fungi, especially those of marine origin. It is the most prominent member of the epipolythiopiperazines, a large class of natural products featuring a diketopiperazine with di- or polysulfide linkage. These highly bioactive compounds have been the subject of numerous studies aimed at new therapeutics. Gliotoxin was originally isolated from Gliocladium fimbriatum, and was named accordingly. It is an epipolythiodioxopiperazine metabolite that is one of the most abundantly produced metabolites in human invasive Aspergillosis (IA).

<span class="mw-page-title-main">Spirotryprostatin B</span> Chemical compound

Spirotryprostatin B is an indolic alkaloid found in the Aspergillus fumigatus fungus that belongs to a class of naturally occurring 2,5-diketopiperazines. Spirotryprostatin B and several other indolic alkaloids have been found to have anti-mitotic properties, and as such they have become of great interest as anti-cancer drugs. Because of this, the total syntheses of these compounds is a major pursuit of organic chemists, and a number of different syntheses have been published in the chemical literature.

<span class="mw-page-title-main">Spirotryprostatin A</span> Chemical compound

Spirotryprostatin A is an indolic alkaloid from the 2,5-Diketopiperazine class of natural products found in the Aspergillus fumigatus fungus. Spirotryprostatin A and several other indolic alkaloids have been found to have anti-mitotic properties, and as such they have become of great interest as anti-cancer drugs. Because of this, the total syntheses of these compounds is a major pursuit of organic chemists, and a number of different syntheses have been published in the chemical literature.

<span class="mw-page-title-main">Paxilline</span> Chemical compound

Paxilline is a toxic, tremorgenic diterpene indole polycyclic alkaloid molecule produced by Penicillium paxilli which was first characterized in 1975. Paxilline is one of a class of tremorigenic mycotoxins, is a potassium channel blocker, and is potentially genotoxic.

Asymmetric hydrogenation is a chemical reaction that adds two atoms of hydrogen to a target (substrate) molecule with three-dimensional spatial selectivity. Critically, this selectivity does not come from the target molecule itself, but from other reagents or catalysts present in the reaction. This allows spatial information to transfer from one molecule to the target, forming the product as a single enantiomer. The chiral information is most commonly contained in a catalyst and, in this case, the information in a single molecule of catalyst may be transferred to many substrate molecules, amplifying the amount of chiral information present. Similar processes occur in nature, where a chiral molecule like an enzyme can catalyse the introduction of a chiral centre to give a product as a single enantiomer, such as amino acids, that a cell needs to function. By imitating this process, chemists can generate many novel synthetic molecules that interact with biological systems in specific ways, leading to new pharmaceutical agents and agrochemicals. The importance of asymmetric hydrogenation in both academia and industry contributed to two of its pioneers — William Standish Knowles and Ryōji Noyori — being awarded one half of the 2001 Nobel Prize in Chemistry.

<span class="mw-page-title-main">Roquefortine C</span> Chemical compound

Roquefortine C is a mycotoxin that belongs to a class of naturally occurring 2,5-diketopiperazines produced by various fungi, particularly species from the genus Penicillium. It was first isolated from a strain of Penicillium roqueforti, a species commercially used as a source of proteolytic and lipolytic enzymes during maturation of the blue-veined cheeses, Roquefort, Danish Blue, Stilton and Gorgonzola.

<span class="mw-page-title-main">Indole</span> Chemical compound

Indole is an aromatic, heterocyclic, organic compound with the formula C8H7N. It has a bicyclic structure, consisting of a six-membered benzene ring fused to a five-membered pyrrole ring. Indole is widely distributed in the natural environment and can be produced by a variety of bacteria. As an intercellular signal molecule, indole regulates various aspects of bacterial physiology, including spore formation, plasmid stability, resistance to drugs, biofilm formation, and virulence. The amino acid tryptophan is an indole derivative and the precursor of the neurotransmitter serotonin.

Throughout human history, fungi have been utilized as a source of food and harnessed to ferment and preserve foods and beverages. In the 20th century, humans have learned to harness fungi to protect human health, while industry has utilized fungi for large scale production of enzymes, acids, and biosurfactants. With the advent of modern nanotechnology in the 1980s, fungi have remained important by providing a greener alternative to chemically synthesized nanoparticle.

<span class="mw-page-title-main">Aurantiamine</span> Chemical compound

(−)-Aurantiamine is a blue fluorescence metabolite produced by the fungus Penicillium aurantiogriseum, the most common fungi found in cereals. (−)-Aurantiamine belongs to a class of naturally occurring 2,5-diketopiperazines featuring a dehydrohistidine residue that exhibit important biological activities, such as anti-cancer or neurotoxic effects. It is the isopropyl analog of the microtubule binding agent (−)-phenylahistin but is 40 times less active than the latter on P388 cell proliferation. The total asymmetric synthesis of (−)-aurantiamine has been described.

<span class="mw-page-title-main">Secalonic acid</span> Group of chemical compounds

Secalonic acids are a group of chiral dimeric tetrahydroxanthones closely related to ergoflavin and ergochrysin A that are collectively called ergochromes and belong to a class of mycotoxins initially isolated as major ergot pigments from the fungi Claviceps purpurea that grows parasitically on rye grasses. From early times and particularly in medieval Europe the consumption of grains containing ergot has repeatedly lead to mass poisonings known as ergotism which was caused by toxic ergot alkaloids and mycotoxins such as the ergochromes, due to contamination of flour by C. purpurea. A cluster of genes responsible for the synthesis of secalonic acids in C. purpurea has been identified. Secalonic acid D the enantiomer of secalonic acid A is a major environmental toxin, isolated from the fungus Penicillium oxalicum, and is a major microbial contaminant of freshly-harvested corn which causes toxicity through contamination of foodstuffs.

<span class="mw-page-title-main">Akuammicine</span> Alkaloid

Akuammicine is a monoterpene indole alkaloid of the Vinca sub-group. It is found in the Apocynaceae family of plants including Picralima nitida, Vinca minor and the Aspidosperma.

<span class="mw-page-title-main">Piscarinine</span>

Piscarinines are bioactive alkaloid isolates of Penicillium piscarium NKM F-961 and Penicillium piscarium Westling that belong to a class of naturally occurring 2,5-diketopiperazines. The cytotoxic dehydroproline tryptophan derivatives piscarinines A and B were shown to be active against the prostate cancer cell line LNCAP.

<span class="mw-page-title-main">Stephacidin</span>

Stephacidin A and B are antitumor alkaloids isolated from the fungus Aspergillus ochraceus that belong to a class of naturally occurring 2,5-diketopiperazines. This unusual family of fungal metabolites are complex bridged 2,5-diketopiperazine alkaloids that possess a unique bicyclo[2.2.2]diazaoctane core ring system and are constituted mainly from tryptophan, proline, and substituted proline derivatives where the olefinic unit of the isoprene moiety has been formally oxidatively cyclized across the α-carbon atoms of a 2,5-diketopiperazine ring. The molecular architecture of stephacidin B, formally a dimer of avrainvillamide, reveals a complex dimeric prenylated N-hydroxyindole alkaloid that contains 15 rings and 9 stereogenic centers and is one of the most complex indole alkaloids isolated from fungi. Stephacidin B rapidly converts into the electrophilic monomer avrainvillamide in cell culture, and there is evidence that the monomer avrainvillamide interacts with intracellular thiol-containing proteins, most likely by covalent modification.

<span class="mw-page-title-main">Dideoxyverticillin A</span> Chemical compound

Dideoxyverticillin A, also known as (+)-11,11′-dideoxyverticillin A, is a complex epipolythiodioxopiperazine initially isolated from the marine fungus Penicillium sp. in 1999. It has also been found in the marine fungus Bionectriaceae, and belongs to a class of naturally occurring 2,5-diketopiperazines.

Fungal isolates have been researched for decades. Because fungi often exist in thin mycelial monolayers, with no protective shell, immune system, and limited mobility, they have developed the ability to synthesize a variety of unusual compounds for survival. Researchers have discovered fungal isolates with anticancer, antimicrobial, immunomodulatory, and other bio-active properties. The first statins, β-Lactam antibiotics, as well as a few important antifungals, were discovered in fungi.

<span class="mw-page-title-main">Brevianamide F</span> Chemical compound

Brevianamide F , also known as cyclo-(L-Trp-L-Pro), belongs to a class of naturally occurring 2,5-diketopiperazines. It is the simplest member and the biosynthetic precursor of a large family of biologically active prenylated tryptophan-proline 2,5-diketopiperazines that are produced by the fungi A. fumigatus and Aspergillus sp. It has been isolated from the bacterium Streptomyces sp. strain TN58 and shown to possess activity against the Gram-positive bacteria S. aureus and Micrococcus luteus. It has also been isolated from Bacillus cereus associated with the entomopathogenic nematode Rhabditis (Oscheius) sp. and shown to have antifungal activity against T. rubrum, C. neoformans, and C. albicans, better than amphotericin B. Although the proline 2,5-diketopiperazines are the most abundant and structurally diverse 2,5-diketopiperazines found in food, cyclo(L-Trp-L-Pro) has only been found as a minor 2,5-diketopiperazine (8.2 ppm) in autolyzed yeast extract. Initially, cyclo(L-Trp-L-Pro) and its DL, LD, and DD isomers showed potential for use in the treatment of cardiovascular dysfunction, but they were later shown to be hepatotoxic.

References

  1. Borthwick AD (2012). "2,5-Diketopiperazines: Synthesis, Reactions, Medicinal Chemistry, and Bioactive Natural Products". Chemical Reviews. 112 (7): 3641–3716. doi:10.1021/cr200398y. PMID   22575049.
  2. 1 2 3 Paterson, R. R. M.; Simmonds, M. J. S.; Kemmelmeier, C.; Blaney, W. M. (1990). "Effects of Brevianamide A, its photolysis product brevianamide D, and ochratoxin A from two Penicillium strains on the insect pests Spodoptera frugiperda and Heliothis virescens". Mycol. Res. 94 (4): 538–542. doi:10.1016/S0953-7562(10)80017-6.
  3. Williams RM, Cox RJ (2003). "Paraherquamides, brevianamides, and asperparalines: laboratory synthesis and biosynthesis. An interim report". Acc. Chem. Res. 36 (2): 127–139. doi:10.1021/ar020229e. PMID   12589698.
  4. 1 2 Thomas G. Rand; S. Giles; J. Flemming; J. David Miller & Eva Puniani (2005). "Inflammatory and Cytotoxic Responses in Mouse Lungs Exposed to Purified Toxins from Building Isolated Penicillium brevicompactum Dierckx and P. chrysogenum". Toxicological Sciences . 87 (1): 213–222. doi: 10.1093/toxsci/kfi223 . PMID   15958659.
  5. Maiya, S.; Grundmann, A.; Li, S. M. & Turner, G. (2006). "The fumitremorgin gene cluster of Aspergillus fumigatus: identification of a gene encoding brevianamide F synthetase". ChemBioChem. 7 (7): 1062–1069. doi:10.1002/cbic.200600003. PMID   16755625. S2CID   28967158.
  6. Bringmann G, Lang G, Steffens S, Schaumann K (2004). "Petrosifungins A and B, novel cyclodepsipeptides from a sponge-derived strain of Penicillium brevicompactum". Journal of Natural Products. 67 (3): 311–315. doi:10.1021/np034015x. PMID   15043401.
  7. Williams, Robert M.; Glinka, Tomasz; Kwast, Ewa; Coffman, Hazel; Stille, James K. (1990). "Asymmetric, stereocontrolled total synthesis of (-)-brevianamide B". Journal of the American Chemical Society. 112 (2): 808–821. doi:10.1021/ja00158a048.
  8. Schkeryantz, Jeffrey M.; Woo, Jonathan C. G.; Siliphaivanh, Phieng; Depew, Kristopher M.; Danishefsky, Samuel J. (1999). "Total Synthesis of Gypsetin, Deoxybrevianamide E, Brevianamide E, and Tryprostatin B: Novel Constructions of 2,3-Disubstituted Indoles". Journal of the American Chemical Society. 121 (51): 11964–11975. doi:10.1021/ja9925249.
  9. Kametani, Tetsuji; Kanaya, Naoaki; Ihara, Masataka (1980). "Asymmetric total synthesis of brevianamide E". Journal of the American Chemical Society. 102 (11): 3974–3975. doi:10.1021/ja00531a061.
  10. Zhao, Liang; May, Jonathan P.; Huang, Jack; Perrin, David M. (2012). "Stereoselective Synthesis of Brevianamide E". Organic Letters. 14 (1): 90–93. doi:10.1021/ol202880y. PMID   22126228.