British Rail flying saucer

Last updated

The British Rail flying saucer, officially known simply as space vehicle, was a proposed interplanetary spacecraft designed by Charles Osmond Frederick. Although the proposed craft required controlled thermonuclear fusion and other futuristic technologies, a patent application was filed on behalf of British Rail in December 1970 and granted on 21 March 1973.

Contents

Purpose

The flying saucer originally started as a proposal for a lifting platform. However, the project was revised and edited, and by the time the patent was filed had become a large passenger craft for interplanetary travel. [1]

Design

The craft was to be powered by nuclear fusion, using laser beams to produce pulses of nuclear energy in a generator in the centre of the craft, at a rate of over 1000 Hz to prevent resonance, which could damage the vehicle. The pulses of energy would then have been transferred out of a nozzle into a series of radial electrodes running along the underside of the craft, which would have converted the energy into electricity that would then pass into a ring of powerful electromagnets (the patent describes using superconductors if possible). These magnets would accelerate subatomic particles emitted by the fusion reaction, providing lift and thrust. [2] This general design was used in several fusion rocket studies.

A layer of thick metal running above the fusion reactor would have acted as a shield to protect the passengers above from the radiation emitted from the core of the reactor. The entire vehicle would be piloted in such a way that the acceleration and deceleration of the craft would have simulated gravity in zero gravity conditions. [2]

A patent application was filed by Jensen and Son on behalf of British Rail on 11 December 1970 and granted on 21 March 1973. [2] [3] [4]

The patent lapsed in 1976 due to non-payment of renewal fees. [1]

Media attention

The patent first came to the attention of the media in an article in The Guardian on 31 May 1978 by Adrian Hope of the New Scientist magazine. There was a further mention in The Daily Telegraph on 11 July 1982, during the silly season. The Railway Magazine mentioned it in its May 1996 issue, saying that the passengers would have been "fried" anyway. [5]

When the patent was rediscovered in 2006, it gained widespread publicity in the British press. A group of nuclear scientists examined the designs and declared them to be unworkable, expensive and very inefficient. Michel van Baal of the European Space Agency claimed "I have had a look at the plans, and they don't look very serious to me at all", adding that many of the technologies used in the craft, such as nuclear fusion and high temperature superconductors, had not yet been discovered, [4] while Colin Pillinger, the scientist in charge of the Beagle 2 probe, was quoted as saying "If I hadn't seen the documents I wouldn't have believed it". [1]

Related Research Articles

<span class="mw-page-title-main">Interstellar travel</span> Hypothetical travel between stars or planetary systems

Interstellar travel is the hypothetical travel of spacecraft between star systems. Due to the vast distances between the Solar System and nearby stars, interstellar travel is not possible with current propulsion technologies.

<span class="mw-page-title-main">Interplanetary spaceflight</span> Crewed or uncrewed travel between stars or planets

Interplanetary spaceflight or interplanetary travel is the crewed or uncrewed travel between stars and planets, usually within a single planetary system. In practice, spaceflights of this type are confined to travel between the planets of the Solar System. Uncrewed space probes have flown to all the observed planets in the Solar System as well as to dwarf planets Pluto and Ceres, and several asteroids. Orbiters and landers return more information than fly-by missions. Crewed flights have landed on the Moon and have been planned, from time to time, for Mars, Venus and Mercury. While many scientists appreciate the knowledge value that uncrewed flights provide, the value of crewed missions is more controversial. Science fiction writers propose a number of benefits, including the mining of asteroids, access to solar power, and room for colonization in the event of an Earth catastrophe.

<span class="mw-page-title-main">Nuclear thermal rocket</span> Nuclear spacecraft propulsion technology

A nuclear thermal rocket (NTR) is a type of thermal rocket where the heat from a nuclear reaction replaces the chemical energy of the propellants in a chemical rocket. In an NTR, a working fluid, usually liquid hydrogen, is heated to a high temperature in a nuclear reactor and then expands through a rocket nozzle to create thrust. The external nuclear heat source theoretically allows a higher effective exhaust velocity and is expected to double or triple payload capacity compared to chemical propellants that store energy internally.

<span class="mw-page-title-main">Fusion rocket</span> Rocket driven by nuclear fusion power

A fusion rocket is a theoretical design for a rocket driven by fusion propulsion that could provide efficient and sustained acceleration in space without the need to carry a large fuel supply. The design requires fusion power technology beyond current capabilities, and much larger and more complex rockets.

<span class="mw-page-title-main">Bussard ramjet</span> Proposed spacecraft propulsion method

The Bussard ramjet is a theoretical method of spacecraft propulsion for interstellar travel. A fast moving spacecraft scoops up hydrogen from the interstellar medium using an enormous funnel-shaped magnetic field ; the hydrogen is compressed until thermonuclear fusion occurs, which provides thrust to counter the drag created by the funnel and energy to power the magnetic field. The Bussard ramjet can thus be seen as a ramjet variant of a fusion rocket.

<span class="mw-page-title-main">Fusion power</span> Electricity generation through nuclear fusion

Fusion power is a proposed form of power generation that would generate electricity by using heat from nuclear fusion reactions. In a fusion process, two lighter atomic nuclei combine to form a heavier nucleus, while releasing energy. Devices designed to harness this energy are known as fusion reactors. Research into fusion reactors began in the 1940s, but as of 2024, no device has reached net power, although net positive reactions have been achieved.

<span class="mw-page-title-main">Starship</span> Spacecraft designed for interstellar travel

A starship, starcraft, or interstellar spacecraft is a theoretical spacecraft designed for traveling between planetary systems. The term is mostly found in science fiction. Reference to a "star-ship" appears as early as 1882 in Oahspe: A New Bible.

<span class="mw-page-title-main">Nuclear pulse propulsion</span> Hypothetical spacecraft propulsion through continuous nuclear explosions for thrust

Nuclear pulse propulsion or external pulsed plasma propulsion is a hypothetical method of spacecraft propulsion that uses nuclear explosions for thrust. It originated as Project Orion with support from DARPA, after a suggestion by Stanislaw Ulam in 1947. Newer designs using inertial confinement fusion have been the baseline for most later designs, including Project Daedalus and Project Longshot.

This timeline of nuclear fusion is an incomplete chronological summary of significant events in the study and use of nuclear fusion.

<span class="mw-page-title-main">ITER</span> International nuclear fusion research and engineering megaproject

ITER is an international nuclear fusion research and engineering megaproject aimed at creating energy through a fusion process similar to that of the Sun. It is being built next to the Cadarache facility in southern France. Upon completion of construction of the main reactor and first plasma, planned for 2033–2034, ITER will be the largest of more than 100 fusion reactors built since the 1950s, with six times the plasma volume of JT-60SA in Japan, the largest tokamak operating today.

<span class="mw-page-title-main">Project Orion (nuclear propulsion)</span> Discontinued US research program on the viability of nuclear pulse propulsion

Project Orion was a study conducted in the 1950s and 1960s by the United States Air Force, DARPA, and NASA into the viability of a nuclear pulse spaceship that would be directly propelled by a series of atomic explosions behind the craft. Early versions of the vehicle were proposed to take off from the ground; later versions were presented for use only in space. The design effort took place at General Atomics in San Diego, and supporters included Wernher von Braun, who issued a white paper advocating the idea. Non-nuclear tests were conducted with models, but the project was eventually abandoned for several reasons, including the 1963 Partial Test Ban Treaty, which banned nuclear explosions in space, amid concerns over nuclear fallout.

<span class="mw-page-title-main">Nuclear propulsion</span> Nuclear power to propel a vehicle

Nuclear propulsion includes a wide variety of propulsion methods that use some form of nuclear reaction as their primary power source. The idea of using nuclear material for propulsion dates back to the beginning of the 20th century. In 1903 it was hypothesized that radioactive material, radium, might be a suitable fuel for engines to propel cars, planes, and boats. H. G. Wells picked up this idea in his 1914 fiction work The World Set Free. Many aircraft carriers and submarines currently use uranium fueled nuclear reactors that can provide propulsion for long periods without refueling. There are also applications in the space sector with nuclear thermal and nuclear electric engines which could be more efficient than conventional rocket engines.

<span class="mw-page-title-main">Project Daedalus</span> 1970s proposal for a large fusion powered unmanned interstellar probe

Project Daedalus was a study conducted between 1973 and 1978 by the British Interplanetary Society to design a plausible uncrewed interstellar probe. Intended mainly as a scientific probe, the design criteria specified that the spacecraft had to use existing or near-future technology and had to be able to reach its destination within a human lifetime. Alan Bond led a team of scientists and engineers who proposed using a fusion rocket to reach Barnard's Star 5.9 light years away. The trip was estimated to take 50 years, but the design was required to be flexible enough that it could be sent to any other target star.

<span class="mw-page-title-main">Experimental Advanced Superconducting Tokamak</span> Experimental tokamak

The Experimental Advanced Superconducting Tokamak (EAST), internal designation HT-7U, is an experimental superconducting tokamak magnetic fusion energy reactor in Hefei, China. The Hefei Institutes of Physical Science is conducting the experiment for the Chinese Academy of Sciences. It has operated since 2006.

Otis T. Carr first emerged into the 1950s flying saucer scene in Baltimore, Maryland, in 1955 when he founded OTC Enterprises, a company that was supposed to advance and apply technology originally suggested by Nikola Tesla. The claim to be applying some idea of Tesla's was quite common among exploiters of the flying saucer movement in the 1950s; for example. George Van Tassel's Integratron was supposedly based partially on (unspecified) lore from Tesla, partially on lore from friendly Space Brothers from Venus.

<span class="mw-page-title-main">KSTAR</span> Nuclear fusion research facility in South Korea

The KSTAR is a magnetic fusion device at the Korea Institute of Fusion Energy in Daejeon, South Korea. It is intended to study aspects of magnetic fusion energy that will be pertinent to the ITER fusion project as part of that country's contribution to the ITER effort. The project was approved in 1995, but construction was delayed by the East Asian financial crisis, which weakened the South Korean economy considerably; however, the project's construction phase was completed on September 14, 2007. The first plasma was achieved in June 2008.

Charles Osmond Frederick is a British engineer who worked on interaction of rails and wheels at the British Railway Technical Centre, Derby.

The Lockheed Martin Compact Fusion Reactor (CFR) was a fusion power project at Lockheed Martin’s Skunk Works. Its high-beta configuration, which implies that the ratio of plasma pressure to magnetic pressure is greater than or equal to 1, allows a compact design and expedited development. The project was active between 2010 and 2019, after that date there have been no updates and it appears the division has shut down.

<span class="mw-page-title-main">Salvatore Pais</span> Romanian-American physicist, aerospace engineer, and inventor

Salvatore Cezar Pais is an American aerospace engineer and inventor, currently working for the United States Space Force. He formerly worked at the Naval Air Station Patuxent River. His patent applications for the US Navy attracted attention for their potential energy-producing applications, but also doubt about their feasibility, and speculation that they may be scams, pseudoscience, or disinformation intended to mislead the United States' adversaries.

The history of nuclear fusion began early in the 20th century as an inquiry into how stars powered themselves and expanded to incorporate a broad inquiry into the nature of matter and energy, as potential applications expanded to include warfare, energy production and rocket propulsion.

References

  1. 1 2 3 Alan Hamilton (13 March 2006). "The next service to arrive at platform twelve will be... a flying saucer". The Times. London. Retrieved 17 March 2007.[ dead link ](subscription required)
  2. 1 2 3 GB 1310990 British Railways Board: "Space vehicle"
  3. "British Rail flying saucer plan". BBC News. 13 March 2006. Retrieved 17 March 2007.
  4. 1 2 Jha, Alok (13 March 2006). "The next saucer to Shoeburyness leaves from platform 5". The Guardian. London. Retrieved 17 March 2007.
  5. "The Railway Magazine". May 1996.{{cite magazine}}: Cite magazine requires |magazine= (help)