Brooker's merocyanine

Last updated
Brooker's merocyanine
Brookersmerocyanine.svg
Names
IUPAC name
1-methyl-4-[(oxocyclohexadienylidene)ethylidene]-1,4-dihydropyridine
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.255.640 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
UNII
  • InChI=1S/C14H13NO/c1-15-10-8-13(9-11-15)3-2-12-4-6-14(16)7-5-12/h2-11H,1H3 Yes check.svgY
    Key: DBOHWMPKJCJANT-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C14H13NO/c1-15-10-8-13(9-11-15)3-2-12-4-6-14(16)7-5-12/h2-11H,1H3
    Key: DBOHWMPKJCJANT-UHFFFAOYAD
  • O=C\2\C=C/C(=C\C=C1\C=C/N(/C=C1)C)/C=C/2
Properties
C14H13NO
Molar mass 211.26 g/mol
AppearanceRed crystals
Melting point 220 °C (428 °F; 493 K) (decomposes)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)
Crystals of Brooker's merocyanine MOED crystals.jpg
Crystals of Brooker's merocyanine
Brooker's merocyanine in different solutions Brooker's merocyanine in different solvents.jpg
Brooker's merocyanine in different solutions

Brooker's merocyanine (1-methyl-4-[(oxocyclohexadienylidene)ethylidene]-1,4-dihydropyridine, MOED) [1] is an organic dye belonging to the class of merocyanines.

Contents

MOED is notable for its solvatochromic properties, meaning it changes color depending on the solvent in which it is dissolved.

As shown in the structural formula, MOED can be depicted using two resonance structures: neutral and zwitterionic. Research indicates that the zwitterionic structure is the major contributor to resonance hybrid when the compound exists in polar solvents such as water, and the neutral form when it exists in nonpolar solvents such as chloroform. [2]

Solvatochromic effects

When MOED is dissolved in various liquids, its colour will vary, depending on the solvent and its polarity. In general, the more polar the solvent, the shorter the wavelengths of the light absorbed will be, this is referred to as a hypsochromic shift. When light of a certain colour (wavelength) is absorbed, the solution will appear in the complementary colour of the one absorbed. Therefore, in water, a highly polar solvent, MOED appears yellow (corresponding to absorbed blue light of wavelengths 435–480 nm), but is purple or blue (corresponding to absorbed green to yellow light of wavelengths 560–595 nm) in acetone, a less polar solvent.

The effect stems in part from the stabilization of the ground state of the merocyanine molecule in polar solvents, which increases the energy gap between the ground state and excited states, which corresponds to shorter wavelengths (increased energy) of the absorbed light. Similarly, protic and aprotic solvents also affect MOED in solution differently. Solvents that are hydrogen donors (i.e. water, acids), will affect the visible absorption spectra by engaging in hydrogen bonding or donating the hydrogen outright, making the molecule favor the zwitterionic resonance form; an example of this may be seen in the picture where acetic acid, though less polar than water, was able to produce a more yellow solution.

Colors of MOED Solutions in Various Solvents [3]
SolventColorλ(max, nm)Relative solvent polarity [4]
WaterYellow4421
MethanolRed-orange5090.762
EthanolRed5100.654
2-PropanolViolet5450.546
DMSOBlue-violet5720.444
AcetoneBlue-violet5770.355
PyridineBlue6030.302
ChloroformBlue618 [5] 0.259

Uses

Because of its solvatochromic properties MOED, and solvatochromic dyes in general, are useful as solvent polarity indicators, and for creating solutions that absorb light at a specific frequency. Additional potential areas of use include pH sensors and transition metal cation indicators. Further uses of MOED includes the production of certain photosensitive materials. Research into merocyanine dyes is ongoing. [6]

Synthesis

Brooker's merocyanine can be prepared beginning with the methylation of 4-methylpyridine to produce 1,4-dimethylpyridinium iodide. Base catalyzed reaction with 4-hydroxybenzaldehyde and subsequent intramolecular dehydration provides Brooker's merocyanine.

Freshly recrystallised brooker's merocyanin Brooker's merocyanin.jpg
Freshly recrystallised brooker's merocyanin
Synthesis of Brooker's merocyanine from 4-methylpyridine, methyl iodide, and 4-hydroxybenzaldehyde. Step 2 is catalyzed by weak base. Brooker's Merocyanine Synthesis.png
Synthesis of Brooker's merocyanine from 4-methylpyridine, methyl iodide, and 4-hydroxybenzaldehyde. Step 2 is catalyzed by weak base.
MOED crystals after one recrystallisation in water MOED Crystals.jpg
MOED crystals after one recrystallisation in water

Notes

  1. Brooker, L.G.S.; Keyes, G.H.; Sprague, R.H.; VanDyke, R.H.; VanLare, E.; VanZandt, G.; White, F.L. (November 1951). "Studies in the cyanine dye series. XI. The Merocyanines". Journal of the American Chemical Society. 74 (11): 5326–5332. doi:10.1021/ja01155a095. link
  2. "Fundamental Studies on Brooker’s Merocyanine", Morley et al., J. Am. Chem. Soc., 1997, 119 (42), 10192-10202 • doi : 10.1021/ja971477m
  3. Minch, M.J. (1977). "Merocyanin dye preparation for the introductory organic laboratory". J. Chem. Educ. 54 (11): 709. Bibcode:1977JChEd..54..709M. doi:10.1021/ed054p709 via ACS Publications.
  4. Reichardt, Christian (2003). Solvents and Solvent Effects in Organic Chemistry. Wiley-VCH Publishers.
  5. Wang, Yuheng (2018). "A Short Spectroscopic Studies on MOED".
  6. Valerii Z. Shirinian and Alexey A. Shimkin: "Merocyanines: Synthesis and Application", in Topics in Heterocyclic Chemistry, Springer, 2008

Related Research Articles

<span class="mw-page-title-main">Solvent</span> Substance dissolving a solute resulting in a solution

A solvent is a substance that dissolves a solute, resulting in a solution. A solvent is usually a liquid but can also be a solid, a gas, or a supercritical fluid. Water is a solvent for polar molecules, and the most common solvent used by living things; all the ions and proteins in a cell are dissolved in water within the cell.

<span class="mw-page-title-main">Solvation</span> Association of molecules of a solvent with molecules or ions of a solute

Solvation describes the interaction of a solvent with dissolved molecules. Both ionized and uncharged molecules interact strongly with a solvent, and the strength and nature of this interaction influence many properties of the solute, including solubility, reactivity, and color, as well as influencing the properties of the solvent such as its viscosity and density. If the attractive forces between the solvent and solute particles are greater than the attractive forces holding the solute particles together, the solvent particles pull the solute particles apart and surround them. The surrounded solute particles then move away from the solid solute and out into the solution. Ions are surrounded by a concentric shell of solvent. Solvation is the process of reorganizing solvent and solute molecules into solvation complexes and involves bond formation, hydrogen bonding, and van der Waals forces. Solvation of a solute by water is called hydration.

<span class="mw-page-title-main">Fluorophore</span> Agents that emit light after excitation by light

A fluorophore is a fluorescent chemical compound that can re-emit light upon light excitation. Fluorophores typically contain several combined aromatic groups, or planar or cyclic molecules with several π bonds.

<span class="mw-page-title-main">Pyrene</span> Chemical compound

Pyrene is a polycyclic aromatic hydrocarbon (PAH) consisting of four fused benzene rings, resulting in a flat aromatic system. The chemical formula is C16H10. This yellow-green solid is the smallest peri-fused PAH. Pyrene forms during incomplete combustion of organic compounds.

<span class="mw-page-title-main">Host–guest chemistry</span> Supramolecular structures held together other than by covalent bonds

In supramolecular chemistry, host–guest chemistry describes complexes that are composed of two or more molecules or ions that are held together in unique structural relationships by forces other than those of full covalent bonds. Host–guest chemistry encompasses the idea of molecular recognition and interactions through non-covalent bonding. Non-covalent bonding is critical in maintaining the 3D structure of large molecules, such as proteins and is involved in many biological processes in which large molecules bind specifically but transiently to one another.

<span class="mw-page-title-main">Photochromism</span> Reversible chemical transformation by absorption of electromagnetic radiation

Photochromism is the reversible change of color upon exposure to light. It is a transformation of a chemical species (photoswitch) between two forms by the absorption of electromagnetic radiation (photoisomerization), where the two forms have different absorption spectra.

<span class="mw-page-title-main">Solvatochromism</span> Change in color of a solution with different solvents

In chemistry, solvatochromism is the phenomenon observed when the colour of a solution is different when the solute is dissolved in different solvents.

Cyanines, also referred to as tetramethylindo(di)-carbocyanines are a synthetic dye family belonging to the polymethine group. Although the name derives etymologically from terms for shades of blue, the cyanine family covers the electromagnetic spectrum from near IR to UV.

<span class="mw-page-title-main">2-Pyridone</span> Chemical compound

2-Pyridone is an organic compound with the formula C
5
H
4
NH(O)
. It is a colourless solid. It is well known to form hydrogen bonded dimers and it is also a classic case of a compound that exists as tautomers.

Good's buffers are twenty buffering agents for biochemical and biological research selected and described by Norman Good and colleagues during 1966–1980. Most of the buffers were new zwitterionic compounds prepared and tested by Good and coworkers for the first time, though some were known compounds previously overlooked by biologists. Before Good's work, few hydrogen ion buffers between pH 6 and 8 had been accessible to biologists, and very inappropriate, toxic, reactive and inefficient buffers had often been used. Many Good's buffers became and remain crucial tools in modern biological laboratories.

<span class="mw-page-title-main">Squaraine dye</span> Class of organic molecules

Squaraine dyes are a class of organic dyes showing intense fluorescence, typically in the red and near infrared region. They are characterized by their unique aromatic four membered ring system derived from squaric acid. Most squaraines are encumbered by nucleophilic attack of the central four membered ring, which is highly electron deficient. This encumbrance can be attenuated by the formation of a rotaxane around the dye to protect it from nucleophiles. They are currently used as sensors for ions and have recently, with the advent of protected squaraine derivatives, been exploited in biomedical imaging.

<span class="mw-page-title-main">Allylic strain</span> Type of strain energy in organic chemistry

Allylic strain in organic chemistry is a type of strain energy resulting from the interaction between a substituent on one end of an olefin with an allylic substituent on the other end. If the substituents are large enough in size, they can sterically interfere with each other such that one conformer is greatly favored over the other. Allylic strain was first recognized in the literature in 1965 by Johnson and Malhotra. The authors were investigating cyclohexane conformations including endocyclic and exocylic double bonds when they noticed certain conformations were disfavored due to the geometry constraints caused by the double bond. Organic chemists capitalize on the rigidity resulting from allylic strain for use in asymmetric reactions.

<span class="mw-page-title-main">BODIPY</span> Parent chemical compound of the BODYPY fluorescent dyes

BODIPY is the technical common name of a chemical compound with formula C
9
H
7
BN
2
F
2
, whose molecule consists of a boron difluoride group BF
2
joined to a dipyrromethene group C
9
H
7
N
2
; specifically, the compound 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene in the IUPAC nomenclature. The common name is an abbreviation for "boron-dipyrromethene". It is a red crystalline solid, stable at ambient temperature, soluble in methanol.

<span class="mw-page-title-main">Fluorescence in the life sciences</span> Scientific investigative technique

Fluorescence is used in the life sciences generally as a non-destructive way of tracking or analysing biological molecules. Some proteins or small molecules in cells are naturally fluorescent, which is called intrinsic fluorescence or autofluorescence. Alternatively, specific or general proteins, nucleic acids, lipids or small molecules can be "labelled" with an extrinsic fluorophore, a fluorescent dye which can be a small molecule, protein or quantum dot. Several techniques exist to exploit additional properties of fluorophores, such as fluorescence resonance energy transfer, where the energy is passed non-radiatively to a particular neighbouring dye, allowing proximity or protein activation to be detected; another is the change in properties, such as intensity, of certain dyes depending on their environment allowing their use in structural studies.

In chemistry, solvent effects are the influence of a solvent on chemical reactivity or molecular associations. Solvents can have an effect on solubility, stability and reaction rates and choosing the appropriate solvent allows for thermodynamic and kinetic control over a chemical reaction.

<span class="mw-page-title-main">J-aggregate</span>

A J-aggregate is a type of dye with an absorption band that shifts to a longer wavelength of increasing sharpness when it aggregates under the influence of a solvent or additive or concentration as a result of supramolecular self-organisation. The dye can be characterized further by a small Stokes shift with a narrow band. The J in J-aggregate refers to E.E. Jelley who discovered the phenomenon in 1936. The dye is also called a Scheibe aggregate after G. Scheibe who also independently published on this topic in 1937.

Methine dyes are dyes whose chromophoric system consists of conjugated double bonds (polyenes) flanked by two end groups: an electron acceptor A and an electron donor D.


Structural of methine dyes

Optical air sensors center around the detection of some form of light created by a chemical process, in order to identify or measure amounts of individual molecules. Portable sensors are specifically sensors that are easy to transport and use in the field.

<span class="mw-page-title-main">Reichardt's dye</span> Chemical compound

Reichardt's dye is an organic dye belonging to the class of azomerocyanine betaines. This dye is notable for its solvatochromic properties, meaning it changes color depending on the solvent in which it is dissolved. It has one of the largest solvatochromic effects ever observed, with color varying across the entire visible spectrum. As a result, it gives striking visual results for chemical demonstrations.

Edward Malcolm Kosower was an American-Israeli chemist.

References