Bupirimate

Last updated
Bupirimate
Bupirimate.svg
Names
Preferred IUPAC name
5-Butyl-2-(ethylamino)-6-methylpyrimidin-4-yl dimethylsulfamate
Other names
Nimrod, Roseclear 2
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.050.339 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 255-391-2
PubChem CID
UNII
  • InChI=1S/C13H24N4O3S/c1-6-8-9-11-10(3)15-13(14-7-2)16-12(11)20-21(18,19)17(4)5/h6-9H2,1-5H3,(H,14,15,16)
    Key: DSKJPMWIHSOYEA-UHFFFAOYSA-N
  • InChI=1/C13H24N4O3S/c1-6-8-9-11-10(3)15-13(14-7-2)16-12(11)20-21(18,19)17(4)5/h6-9H2,1-5H3,(H,14,15,16)
    Key: DSKJPMWIHSOYEA-UHFFFAOYAP
  • CCCCC1=C(N=C(N=C1OS(=O)(=O)N(C)C)NCC)C
Properties
C13H24N4O3S
Molar mass 316.42 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Bupirimate (systematic name 5-butyl-2-ethylamino-6-methylpyrimidin-4-yldimethylsulphamate; brand names Nimrod and Roseclear 2) is an active ingredient of plant protection products (or pesticides), which has an effect as a fungicide. [1] It belongs to the chemical family of pyrimidine sulfamates. Bupirimate has translaminar mobility and systemic translocation in the xylem. It acts mainly by inhibiting sporulation and is used for control of powdery mildew of apples, pears, stone fruit, cucurbits, roses and other ornamentals, strawberries, gooseberries, currants, raspberries, hops, beets and other crops. Bupirimate is not an insecticide. It is of low mammalian toxicity and is non-toxic to bees. However, it is used in many products which also contain insecticides.

Contents

History

A research programme at ICI's Jealott's Hill site during the 1960s had the objective of discovering fungicides which could penetrate into and move within plants and hence could cure established infections. The outcome of the research was three related compounds: dimethirimol, ethirimol and bupirimate which were first marketed in 1968, 1970 and 1975 respectively. The key target for these fungicides are the mildews but each compound differs in its effect on individual mildew species. In particular, bupirimate is effective on apple powdery mildew caused by the fungus Podosphaera leucotricha , which the earlier materials were not. [2]

Regulation

In terms of the regulation of plant protection products in the European Union, this active substance is in revision of the inclusion in Annex I of the 91/414/EEC Directive. [3] In France, the active substance is permitted in the composition of preparations with an authorization on the market.

Related Research Articles

<span class="mw-page-title-main">Pesticide</span> Substance used to destroy pests

Pesticides are substances that are used to control pests. They include herbicides, insecticides, nematicides, fungicides, and many others. The most common of these are herbicides, which account for approximately 50% of all pesticide use globally. Most pesticides are used as plant protection products, which in general protect plants from weeds, fungi, or insects. In general, a pesticide is a chemical or biological agent that deters, incapacitates, kills, or otherwise discourages pests. Target pests can include insects, plant pathogens, weeds, molluscs, birds, mammals, fish, nematodes (roundworms), and microbes that destroy property, cause nuisance, or spread disease, or are disease vectors. Along with these benefits, pesticides also have drawbacks, such as potential toxicity to humans and other species.

A biocide is defined in the European legislation as a chemical substance or microorganism intended to destroy, deter, render harmless, or exert a controlling effect on any harmful organism. The US Environmental Protection Agency (EPA) uses a slightly different definition for biocides as "a diverse group of poisonous substances including preservatives, insecticides, disinfectants, and pesticides used for the control of organisms that are harmful to human or animal health or that cause damage to natural or manufactured products". When compared, the two definitions roughly imply the same, although the US EPA definition includes plant protection products and some veterinary medicines.

<span class="mw-page-title-main">Powdery mildew</span> Fungal plant disease

Powdery mildew is a fungal disease that affects a wide range of plants. Powdery mildew diseases are caused by many different species of ascomycete fungi in the order Erysiphales. Powdery mildew is one of the easier plant diseases to identify, as the signs of the causal pathogen are quite distinctive. Infected plants display white powdery spots on the leaves and stems. This mycelial layer may quickly spread to cover all of the leaves. The lower leaves are the most affected, but the mildew can appear on any above-ground part of the plant. As the disease progresses, the spots get larger and denser as large numbers of asexual spores are formed, and the mildew may spread up and down the length of the plant.

<span class="mw-page-title-main">VG (nerve agent)</span> Chemical compound

VG is a "V-series" nerve agent chemically similar to the better-known VX nerve agent. Tetram is the common Russian name for the substance. Amiton was the trade name for the substance when it was marketed as an insecticide by ICI in the mid-1950s.

A Biopesticide is a biological substance or organism that damages, kills, or repels organisms seens as pests. Biological pest management intervention involves predatory, parasitic, or chemical relationships.

<span class="mw-page-title-main">Diquat</span> Chemical compound

Diquat is the ISO common name for an organic dication that, as a salt with counterions such as bromide or chloride is used as a contact herbicide that produces desiccation and defoliation. Diquat is no longer approved for use in the European Union, although its registration in many other countries including the USA is still valid.

<span class="mw-page-title-main">Azoxystrobin</span> Chemical compound

Azoxystrobin is a broad spectrum systemic fungicide widely used in agriculture to protect crops from fungal diseases. It was first marketed in 1996 using the brand name Amistar and by 1999 it had been registered in 48 countries on more than 50 crops. In the year 2000 it was announced that it had been granted UK Millennium product status.

Insecticidal soap is used to control many plant insect pests. Soap has been used for more than 200 years as an insect control. Because insecticidal soap works on direct contact with pests via the disruption of cell membranes when the insect is penetrated with fatty acids, the insect's cells leak their contents causing the insect to dehydrate and die. Insecticidal soap is sprayed on plants until the entire plant is saturated because the insecticidal properties of the soap occurs when the solution is wet. Soaps have a low mammalian toxicity and are therefore considered safe to be used around children and pets, and may be used in organic farming.

<span class="mw-page-title-main">Cyhalothrin</span> Synthetic pyrethroid used as insecticide

Cyhalothrin is an organic compound that, in specific isomeric forms, is used as a pesticide. It is a pyrethroid, a class of synthetic insecticides that mimic the structure and properties of the naturally occurring insecticide pyrethrin which is present in the flowers of Chrysanthemum cinerariifolium. Pyrethroids, such as cyhalothrin, are often preferred as an active ingredient in agricultural insecticides because they are more cost-effective and longer acting than natural pyrethrins. λ-and γ-cyhalothrin are now used to control insects and spider mites in crops including cotton, cereals, potatoes and vegetables.

<span class="mw-page-title-main">Pirimicarb</span> Chemical compound

Pirimicarb is a selective carbamate insecticide used to control aphids on vegetable, cereal and orchard crops by inhibiting acetylcholinesterase activity but does not affect useful predators such as ladybirds that eat them. It was originally developed by Imperial Chemical Industries Ltd., now Syngenta, at their Jealott's Hill site and first marketed in 1969, four years after its discovery.

<span class="mw-page-title-main">Pirimiphos-methyl</span> Chemical compound

Pirimiphos-methyl, marketed as Actellic and Sybol, is a phosphorothioate used as an insecticide. It was originally developed by Imperial Chemical Industries Ltd., now Syngenta, at their Jealott's Hill site and first marketed in 1977, ten years after its discovery.

<span class="mw-page-title-main">Acetamiprid</span> Chemical compound

Acetamiprid is an organic compound with the chemical formula C10H11ClN4. It is an odorless neonicotinoid insecticide produced under the trade names Assail, and Chipco by Aventis CropSciences. It is systemic and intended to control sucking insects (Thysanoptera, Hemiptera, mainly aphids) on crops such as leafy vegetables, citrus fruits, pome fruits, grapes, cotton, cole crops, and ornamental plants. It is also a key pesticide in commercial cherry farming due to its effectiveness against the larvae of the cherry fruit fly.

<span class="mw-page-title-main">Epoxiconazole</span> Fungicide

Epoxiconazole is a fungicide active ingredient from the class of azoles developed to protect crops. In particular, the substance inhibits the metabolism of fungi cells infesting useful plants, and thereby prevents the growth of the mycelia. Epoxiconazole also limits the production of conidia (mitospores). Epoxiconazole was introduced to the market by BASF SE in 1993 and can be found in many products and product mixtures targeting a large number of pathogens in various crops. Crops are, for example, cereals, soybeans, banana, rice, coffee, turnips, and red as well as sugar beets.

<span class="mw-page-title-main">Tefluthrin</span> Synthetic pyrethroid used as insecticide

Tefluthrin is the ISO common name for an organic compound that is used as a pesticide. It is a pyrethroid, a class of synthetic insecticides that mimic the structure and properties of the naturally occurring insecticide pyrethrin which is present in the flowers of Chrysanthemum cinerariifolium. Pyrethroids such as tefluthrin are often preferred as active ingredients in agricultural insecticides because they are more cost-effective and longer acting than natural pyrethrins. It is effective against soil pests because it can move as a vapour without irreversibly binding to soil particles: in this respect it differs from most other pyrethroids.

<span class="mw-page-title-main">Pyrazophos</span> Chemical compound

Pyrazophos is an organic compound used as a fungicide and an insecticide.

<span class="mw-page-title-main">Triamiphos</span> Chemical compound

Triamiphos (chemical formula: C12H19N6OP) is an organophosphate used as a pesticide and fungicide. It is used to control powdery mildews on apples and ornamentals. It was discontinued by the US manufacturer in 1998.

Early twenty-first century pesticide research has focused on developing molecules that combine low use rates and that are more selective, safer, resistance-breaking and cost-effective. Obstacles include increasing pesticide resistance and an increasingly stringent regulatory environment.

<span class="mw-page-title-main">Fluxapyroxad</span> Chemical compound

Fluxapyroxad is a broad-spectrum pyrazole-carboxamide fungicide used on a large variety of commercial crops. It stunts fungus growth by inhibiting the succinate dehydrogenase (SQR) enzyme. Application of fluxapyroxad helps prevent many wilts and other fungal infections from taking hold. As with other systemic pesticides that have a long chemical half-life, there are concerns about keeping fluxapyroxad out of the groundwater, especially when combined with pyraclostrobin. There is also concern that some fungi may develop resistance to fluxapyroxad.

Trunk injection or endotherapy also known as vegetative endotherapy, is a method of target-precise application of pesticides, plant resistance activators, or fertilizers into the xylem vascular tissue of a tree with the purpose of protecting the tree from pests, or to inject nutrients to correct for nutrient deficiencies. This method largely relies on harnessing the tree's vascular system to translocate and distribute the active compounds into the wood, canopy and roots where protection or nutrition is needed.

<span class="mw-page-title-main">Cyproconazole</span> Chemical compound

Cyproconazole is an agricultural fungicide of the class of azoles, used on cereal crops, coffee, sugar beet, fruit trees and grapes, and peanuts, on sod farms and golf course turf and on wood as a preservative. It has been used against powdery mildew, rust on cereals and apple scab, and applied by air or on the ground or by chemigation.

References

  1. U.S. patent 5,212,197
  2. Bent, K.J.; et al. (1978). "Chapter 10: Pyrimidine fungicides". In Peacock, F.C. (ed.). Jealott's Hill: Fifty years of Agricultural Research 1928-1978 . Imperial Chemical Industries Ltd. pp.  87–97. ISBN   0901747017.
  3. "Bupirimate" (PDF). European Chemicals Agency.