Butterfly network

Last updated
Figure 1: Butterfly Network for 8 processors Butterfly Network.jpg
Figure 1: Butterfly Network for 8 processors

A butterfly network is a technique to link multiple computers into a high-speed network. This form of multistage interconnection network topology can be used to connect different nodes in a multiprocessor system. The interconnect network for a shared memory multiprocessor system must have low latency and high bandwidth unlike other network systems, like local area networks (LANs) or internet [1] for three reasons:

Contents

Components

The major components of an interconnect network are: [2]

These multistage networks have lower cost than a cross bar, but obtain lower contention than a bus. The ratio of switching nodes to processor nodes is greater than one in a butterfly network. Such topology, where the ratio of switching nodes to processor nodes is greater than one, is called an indirect topology. [3]

The network derives its name from connections between nodes in two adjacent ranks (as shown in figure 1), which resembles a butterfly. Merging top and bottom ranks into a single rank, creates a Wrapped Butterfly Network. [3] In figure 1, if rank 3 nodes are connected back to respective rank 0 nodes, then it becomes a wrapped butterfly network.

BBN Butterfly, a massive parallel computer built by Bolt, Beranek and Newman in the 1980s, used a butterfly interconnect network. [4] Later in 1990, Cray Research's machine Cray C90, used a butterfly network to communicate between its 16 processors and 1024 memory banks. [5]

Butterfly network building

For a butterfly network with p processor nodes, there need to be p(log2 p + 1) switching nodes. Figure 1 shows a network with 8 processor nodes, which implies 32 switching nodes. It represents each node as N(rank, column number). For example, the node at column 6 in rank 1 is represented as (1,6) and node at column 2 in rank 0 is represented as (0,2). [3]

For any 'i' greater than zero, a switching node N(i,j) gets connected to N(i-1, j) and N(i-1, m), where, m is inverted bit on ith location of j. For example, consider the node N(1,6): i equals 1 and j equals 6, therefore m is obtained by inverting the ith bit of 6.

VariableBinary representationDecimal Representation
j1106
m0102

As a result, the nodes connected to N(1,6) are :

N(i,j)N(i-1,j)N(i-1,m)
(1,6)(0,6)(0,2)

Thus, N(0,6), N(1,6), N(0,2), N(1,2) form a butterfly pattern. Several butterfly patterns exist in the figure and therefore, this network is called a Butterfly Network.

Butterfly network routing

Figure 2: Butterfly Network Routing Butterfly Network Routing.jpg
Figure 2: Butterfly Network Routing

In a wrapped butterfly network (which means rank 0 gets merged with rank 3), a message is sent from processor 5 to processor 2. [3] In figure 2, this is shown by replicating the processor nodes below rank 3. The packet transmitted over the link follows the form:

HeaderPayloadTrailer

The header contains the destination of the message, which is processor 2 (010 in binary). The payload is the message, M and trailer contains checksum. Therefore, the actual message transmitted from processor 5 is:

010Mchecksum

Upon reaching a switching node, one of the two output links is selected based on the most significant bit of the destination address. If that bit is zero, the left link is selected. If that bit is one, the right link is selected. Subsequently, this bit is removed from the destination address in the packet transmitted through the selected link. This is shown in figure 2.

Butterfly network parameters

Several parameters help evaluate a network topology. The prominent ones relevant in designing large-scale multi-processor systems are summarized below and an explanation of how they are calculated for a butterfly network with 8 processor nodes as shown in figure 1 is provided. [6]

Comparison with other network topologies

This section compares the butterfly network with linear array, ring, 2-D mesh and hypercube networks. [7] Linear array can be considered as a 1-D mesh topology. Relevant parameters are compiled in the table [8] (‘p’ represents the number of processor nodes).

Network parameters
TopologyDiameterBisection BandwidthLinksDegree
Linear arrayp-11p-12
Ringp/22p2
2-D mesh2(p - 1)p2p(p - 1)4
Hypercubelog2(p)p/2log2(p) × (p/2)log2(p)
Butterflylog2(p)2^hlog2(p) × 2p4

Advantages

Disadvantages

The difference between hypercube and butterfly lies within their implementation. Butterfly network has a symmetric structure where all processor nodes between two ranks are equidistant to each other, whereas hypercube is more suitable for a multi-processor system which demands unequal distances between its nodes. By looking at the number of links required, it may appear that hypercube is cheaper and simpler compared to a butterfly network, but as the number of processor nodes go beyond 16, the router cost and complexity (represented by degree) of butterfly network becomes lower than hypercube because its degree is independent of the number of nodes.

In conclusion, no single network topology is best for all scenarios. The decision is made based on factors like the number of processor nodes in the system, bandwidth-latency requirements, cost and scalability.

See also

Sources

Related Research Articles

<span class="mw-page-title-main">Ethernet</span> Computer networking technology

Ethernet is a family of wired computer networking technologies commonly used in local area networks (LAN), metropolitan area networks (MAN) and wide area networks (WAN). It was commercially introduced in 1980 and first standardized in 1983 as IEEE 802.3. Ethernet has since been refined to support higher bit rates, a greater number of nodes, and longer link distances, but retains much backward compatibility. Over time, Ethernet has largely replaced competing wired LAN technologies such as Token Ring, FDDI and ARCNET.

Network throughput refers to the rate of message delivery over a communication channel, such as Ethernet or packet radio, in a communication network. The data that these messages contain may be delivered over physical or logical links, or through network nodes. Throughput is usually measured in bits per second, and sometimes in data packets per second or data packets per time slot.

Circuit switching is a method of implementing a telecommunications network in which two network nodes establish a dedicated communications channel (circuit) through the network before the nodes may communicate. The circuit guarantees the full bandwidth of the channel and remains connected for the duration of the communication session. The circuit functions as if the nodes were physically connected as with an electrical circuit.

<span class="mw-page-title-main">Network topology</span> Arrangement of the elements of a communication network

Network topology is the arrangement of the elements of a communication network. Network topology can be used to define or describe the arrangement of various types of telecommunication networks, including command and control radio networks, industrial fieldbusses and computer networks.

Wormhole flow control, also called wormhole switching or wormhole routing, is a system of simple flow control in computer networking based on known fixed links. It is a subset of flow control methods called Flit-Buffer Flow Control.

<span class="mw-page-title-main">Scalable Coherent Interface</span> High-speed interconnect standard for shared memory multiprocessing and message passing

The Scalable Coherent Interface or Scalable Coherent Interconnect (SCI), is a high-speed interconnect standard for shared memory multiprocessing and message passing. The goal was to scale well, provide system-wide memory coherence and a simple interface; i.e. a standard to replace existing buses in multiprocessor systems with one with no inherent scalability and performance limitations.

<span class="mw-page-title-main">Fat tree</span> Universal network for provably efficient communication

The fat tree network is a universal network for provably efficient communication. It was invented by Charles E. Leiserson of the Massachusetts Institute of Technology in 1985. k-ary n-trees, the type of fat-trees commonly used in most high-performance networks, were initially formalized in 1997.

<span class="mw-page-title-main">Ring network</span>

A ring network is a network topology in which each node connects to exactly two other nodes, forming a single continuous pathway for signals through each node – a ring. Data travels from node to node, with each node along the way handling every packet.

<span class="mw-page-title-main">RapidIO</span> Electrical connection technology

The RapidIO architecture is a high-performance packet-switched electrical connection technology. RapidIO supports messaging, read/write and cache coherency semantics. Based on industry-standard electrical specifications such as those for Ethernet, RapidIO can be used as a chip-to-chip, board-to-board, and chassis-to-chassis interconnect.

The link-state advertisement (LSA) is a basic communication means of the OSPF routing protocol for the Internet Protocol (IP). It communicates the router's local routing topology to all other local routers in the same OSPF area. OSPF is designed for scalability, so some LSAs are not flooded out on all interfaces, but only on those that belong to the appropriate area. In this way detailed information can be kept localized, while summary information is flooded to the rest of the network. The original IPv4-only OSPFv2 and the newer IPv6-compatible OSPFv3 have broadly similar LSA types.

<span class="mw-page-title-main">Computer network</span> Network that allows computers to share resources and communicate with each other

A computer network is a set of computers sharing resources located on or provided by network nodes. Computers use common communication protocols over digital interconnections to communicate with each other. These interconnections are made up of telecommunication network technologies based on physically wired, optical, and wireless radio-frequency methods that may be arranged in a variety of network topologies.

In computer networking, if the network is bisected into two equal-sized partitions, the bisection bandwidth of a network topology is the bandwidth available between the two partitions. Bisection should be done in such a way that the bandwidth between two partitions is minimum. Bisection bandwidth gives the true bandwidth available in the entire system. Bisection bandwidth accounts for the bottleneck bandwidth of the entire network. Therefore bisection bandwidth represents bandwidth characteristics of the network better than any other metric.

An Airborne Network (AN) is the infrastructure owned by the United States Air Force that provides communication transport services through at least one node that is on a platform capable of flight.

Multistage interconnection networks (MINs) are a class of high-speed computer networks usually composed of processing elements (PEs) on one end of the network and memory elements (MEs) on the other end, connected by switching elements (SEs). The switching elements themselves are usually connected to each other in stages, hence the name.

IEEE 802.1aq is an amendment to the IEEE 802.1Q networking standard which adds support for Shortest Path Bridging (SPB). This technology is intended to simplify the creation and configuration of Ethernet networks while enabling multipath routing.

Collective operations are building blocks for interaction patterns, that are often used in SPMD algorithms in the parallel programming context. Hence, there is an interest in efficient realizations of these operations.

<span class="mw-page-title-main">Torus interconnect</span> Type of geometry for connecting computer nodes

A torus interconnect is a switch-less network topology for connecting processing nodes in a parallel computer system.

In computer networking, a flit is a link-level atomic piece that forms a network packet or stream. The first flit, called the header flit holds information about this packet's route and sets up the routing behavior for all subsequent flits associated with the packet. The header flit is followed by zero or more body flits, containing the actual payload of data. The final flit, called the tail flit, performs some book keeping to close the connection between the two nodes.

The STC104 switch, also known as the C104 switch in its early phases, is an asynchronous packet-routing chip that was designed for building high-performance point-to-point computer communication networks. It was developed by INMOS in the 1990s and was the first example of a general-purpose production packet routing chip. It was also the first routing chip to implement wormhole routing, to decouple packet size from the flow-control protocol, and to implement interval and two-phase randomized routing.

<span class="mw-page-title-main">Hypercube internetwork topology</span>

In computer networking, hypercube networks are a type of network topology used to connect multiple processors with memory modules and accurately route data. Hypercube networks consist of 2m nodes, which form the vertices of squares to create an internetwork connection. A hypercube is basically a multidimensional mesh network with two nodes in each dimension. Due to similarity, such topologies are usually grouped into a k-ary d-dimensional mesh topology family, where d represents the number of dimensions and k represents the number of nodes in each dimension.

References

  1. Solihin 2009, pp. 371–372.
  2. Solihin 2009, pp. 373–374.
  3. 1 2 3 4 Leighton, F.Thomson (1992). Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes . Morgan Kaufmann Publishers. ISBN   1-55860-117-1.
  4. T., LeBlanc; M., Scott; C., Brown (1988-01-01). Large-Scale Parallel Programming: Experience with the BBN Butterfly Parallel Processor (Report). Butterfly Project. hdl:1802/15082.
  5. Jadhav, Sunitha S (2009). Advanced Computer Architecture and Computing. Technical Publications. pp. Section 3–22. ISBN   9788184315721.
  6. Solihin 2009, pp. 377–378.
  7. M. Arjomand, H. Sarbazi-Azad, "Performance Evaluation of Butterfly on-Chip Network for MPSoCs", International SoC Design Conference, pp. 1–296-1-299, 2008
  8. Solihin 2009, pp. 379–380.