CKAP4

Last updated
CKAP4
Identifiers
Aliases CKAP4 , CLIMP-63, ERGIC-63, p63, cytoskeleton-associated protein 4, cytoskeleton associated protein 4, CLIMP63
External IDs MGI: 2444926 HomoloGene: 4970 GeneCards: CKAP4
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_006825

NM_175451

RefSeq (protein)

NP_006816

NP_780660

Location (UCSC) Chr 12: 106.24 – 106.3 Mb Chr 10: 84.36 – 84.37 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Cytoskeleton-associated protein 4 is a protein that in humans is encoded by the CKAP4 gene. [5] [6]

Contents

CKAP4 also historically known as CLIMP-63 (cytoskeleton-linking membrane protein 63), or just p63 (during the 1990s) is an abundant type II transmembrane protein residing predominantly in the endoplasmic reticulum (ER) of eukaryotic cells and encoded in higher vertebrates by the gene CKAP4. [7] [8] [9] [10] [11]

Discovery

CLIMP-63 was discovered in the early 1990s as the most S-palmitoylated protein during mitosis, [12] [13] Nevertheless, the effect of this modification to date remains unclear. CLIMP-63 was extensively studied during the 1990s by the group of Hans-Peter Hauri (University of Basel, CH) which has characterized CLIMP-63's life in the ER. More recently, different groups have also reported CLIMP-63's presence at the plasma membrane acting as a ligand-activated receptor. [14] [15] [16] CLIMP-63 has also now been described as a marker in different cancers. [17]

Localization, molecular functions and regulation

CLIMP-63's cellular distribution has been assessed (and re-assessed) several times in the last two decades. The protein includes a cytosolic segment composed of positively charged amino acid (2–23) which might act as a preponderant motif for folding and ER localization. [18] [19] Furthermore, CLIMP-63 was one of the first discovered ER-shaping proteins. [20] and is mostly known for participating in the generation and maintenance of the ER sheets [20] [21] This is thought to occur after dimerization of CLIMP-63's luminal COILED-COIL domains in cis (two CLIMP-63 proteins of the same ER membrane layer) and/or trans (between two different ER membrane layers, across the ER lumen). [20] Multimerization might in addition limit CLIMP-63's diffusion out of ER-sheets. [22]

CLIMP-63 was also shown to bind microtubules through its cytoplasmic disordered tail which might help anchoring the ER-sheets to the cytoskeleton. This is regulated by phosphorylation of at least three serine residues of CLIMP-63's cytosolic tail (S3, S17 and S19) as phosphorylation interferes with CLIMP-63's microtubule binding capacity. [23]

In addition, CLIMP-63 can undergo another post-translational modification, S-palmitoylation, on cysteine 100 of its cytoplasmic domain. So far only the palmitoyl-acyltransferase ZDHHC2 has been identified as a potential regulator of CLIMP-63's palmitoylation but as ZDHHC2 resides mostly at the plasma membrane, supplementary investigations are needed. [24] [25] The consequence of S-palmitoylation remain to be investigated but could play a role in the cell cycle as CLIMP-63's palmitoylation was reported to strongly increase during mitosis. [12]

Finally, CLIMP-63 has been shown by different groups to serve as a cell surface receptor for various extracellular ligands, in particular for surfactant protein A (SP-A) in lungs alveoli, [15] tissue plasminogen activator (tPA) in vascular smooth muscle cells [14] and for anti-proliferative factor (APF) in bladder epithelial cells of patients with interstitial cystitis disorder. [16]

Diseases

More recently, CLIMP-63 has been related to different types of cancer prognosis. Upregulation of CLIMP-63 is observed in cholangio-cellular and hepatocellular carcinoma and it correlates with lymph node metastasis appearance. [17] [26]

Related Research Articles

<span class="mw-page-title-main">Endoplasmic reticulum</span> Cell organelle that synthesizes, folds and processes proteins

The endoplasmic reticulum (ER) is, in essence, the transportation system of the eukaryotic cell, and has many other important functions such as protein folding. It is a type of organelle made up of two subunits – rough endoplasmic reticulum (RER), and smooth endoplasmic reticulum (SER). The endoplasmic reticulum is found in most eukaryotic cells and forms an interconnected network of flattened, membrane-enclosed sacs known as cisternae, and tubular structures in the SER. The membranes of the ER are continuous with the outer nuclear membrane. The endoplasmic reticulum is not found in red blood cells, or spermatozoa.

<span class="mw-page-title-main">Vesicular-tubular cluster</span>

The vesicular-tubular cluster (VTC), also referred to as the endoplasmic-reticulum–Golgi intermediate compartment (ERGIC), is an organelle in eukaryotic cells. This compartment mediates trafficking between the endoplasmic reticulum (ER) and Golgi complex, facilitating the sorting of cargo. The cluster was first identified in 1988 using an antibody to the protein that has since been named ERGIC-53.

<span class="mw-page-title-main">PDIA3</span> Protein-coding gene in the species Homo sapiens

Protein disulfide-isomerase A3 (PDIA3), also known as glucose-regulated protein, 58-kD (GRP58), is an isomerase enzyme. This protein localizes to the endoplasmic reticulum (ER) and interacts with lectin chaperones calreticulin and calnexin (CNX) to modulate folding of newly synthesized glycoproteins. It is thought that complexes of lectins and this protein mediate protein folding by promoting formation of disulfide bonds in their glycoprotein substrates.

<span class="mw-page-title-main">ATF6</span> Protein-coding gene in the species Homo sapiens

Activating transcription factor 6, also known as ATF6, is a protein that, in humans, is encoded by the ATF6 gene and is involved in the unfolded protein response.

<span class="mw-page-title-main">KTN1</span> Protein-coding gene in the species Homo sapiens

Kinectin is a protein that in humans is encoded by the KTN1 gene.

<span class="mw-page-title-main">SEC61B</span> Mammalian protein found in Homo sapiens

Protein transport protein Sec61 subunit beta is a protein that in humans is encoded by the SEC61B gene.

<span class="mw-page-title-main">Derlin-1</span> Protein involved in retrotranslocation of specific misfolded proteins and in ER stress

Derlin-1 also known as degradation in endoplasmic reticulum protein 1 is a membrane protein that in humans is encoded by the DERL1 gene. Derlin-1 is located in the membrane of the endoplasmic reticulum (ER) and is involved in retrotranslocation of specific misfolded proteins and in ER stress. Derlin-1 is widely expressed in thyroid, fat, bone marrow and many other tissues. The protein belongs to the Derlin-family proteins consisting of derlin-1, derlin-2 and derlin-3 that are components in the endoplasmic reticulum-associated protein degradation (ERAD) pathway. The derlins mediate degradation of misfolded lumenal proteins within ER, and are named ‘der’ for their ‘Degradation in the ER’. Derlin-1 is a mammalian homologue of the yeast DER1 protein, a protein involved in the yeast ERAD pathway. Moreover, derlin-1 is a member of the rhomboid-like clan of polytopic membrane proteins.

<span class="mw-page-title-main">ZW10</span>

Centromere/kinetochore protein zw10 homolog is a protein that in humans is encoded by the ZW10 gene. This gene encodes a protein that is one of many involved in mechanisms to ensure proper chromosome segregation during cell division. The encoded protein binds to centromeres during the prophase, metaphase, and early anaphase cell division stages and to kinetochore microtubules during metaphase.

<span class="mw-page-title-main">KDELR1</span> Protein-coding gene in the species Homo sapiens

KDEL (Lys-Asp-Glu-Leu) endoplasmic reticulum protein retention receptor 1, also known as KDELR1, is a protein which in humans is encoded by the KDELR1 gene.

<span class="mw-page-title-main">VAPA</span> Protein-coding gene in humans

VAMP-Associated Protein A is a protein that in humans is encoded by the VAPA gene. Together with VAPB and VAPC it forms the VAP protein family. They are integral endoplasmic reticulum membrane proteins of the type II and are ubiquitous among eukaryotes.

<span class="mw-page-title-main">Sec61 alpha 1</span>

Protein transport protein Sec61 subunit alpha isoform 1 is a protein that in humans is encoded by the SEC61A1 gene.

<span class="mw-page-title-main">SIL1</span> Protein-coding gene in the species Homo sapiens

Nucleotide exchange factor SIL1 is a protein that in humans is encoded by the SIL1 gene.

<span class="mw-page-title-main">SEC22B</span> Protein-coding gene in the species Homo sapiens

Vesicle-trafficking protein SEC22b is a protein that in humans is encoded by the SEC22B gene.

<span class="mw-page-title-main">ERP44</span> Protein-coding gene in the species Homo sapiens

Endoplasmic reticulum resident protein 44 (ERp44) also known as thioredoxin domain-containing protein 4 (TXNDC4) is a protein that in humans is encoded by the ERP44 gene.

<span class="mw-page-title-main">YIF1A</span> Protein-coding gene in the species Homo sapiens

Protein YIF1A is a Yip1 domain family proteins that in humans is encoded by the YIF1A gene.

<span class="mw-page-title-main">LMAN2</span> Protein-coding gene in the species Homo sapiens

Vesicular integral-membrane protein VIP36 is a protein that in humans is encoded by the LMAN2 gene.

<span class="mw-page-title-main">ZDHHC2</span> Protein-coding gene in the species Homo sapiens

Zinc finger, also known as ZDHHC2, is a human gene.

<span class="mw-page-title-main">SEC24A</span> Protein-coding gene in the species Homo sapiens

SEC24 family, member A is a protein that in humans is encoded by the SEC24A gene. The protein belongs to a protein family that are homologous to yeast Sec24. It is a component of coat protein II (COPII)-coated vesicles that mediate protein transport from the endoplasmic reticulum.

<span class="mw-page-title-main">Giantin</span> Protein-coding gene in the species Homo sapiens

Giantin or Golgin subfamily B member 1 is a protein that in humans is encoded by the GOLGB1 gene. Giantin is located at the cis-medial rims of the Golgi apparatus and is part of the Golgi matrix that is responsible for membrane trafficking in secretory pathway of proteins. This function is key for proper localisation of proteins at the plasma membrane and outside the cell which is important for cell function that is dependent on for example receptors and the extracellular matrix function. Recent animal model knockout studies of GOLGB1 in mice, rat, and zebrafish have shown that phenotypes are different between species ranging from mild to severe craniofacial defects in the rodent models to just minor size defects in zebrafish. However, in adult zebrafish a tumoral calcinosis-like phenotype was observed, and in humans such phenotype has been linked to defective glycosyltransferase function.

<span class="mw-page-title-main">Hans-Peter Hauri</span> Swiss biologist

Hans-Peter Hauri is a Swiss biologist

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000136026 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000046841 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Schweizer A, Rohrer J, Jenö P, DeMaio A, Buchman TG, Hauri HP (March 1993). "A reversibly palmitoylated resident protein (p63) of an ER-Golgi intermediate compartment is related to a circulatory shock resuscitation protein". Journal of Cell Science. 104 (3): 685–94. doi:10.1242/jcs.104.3.685. PMID   8314870.
  6. "Entrez Gene: CKAP4 cytoskeleton-associated protein 4".
  7. "Gene: CKAP4 (ENSG00000136026) - Summary - Homo sapiens - Ensembl genome browser 89". may2017.archive.ensembl.org. Retrieved 2018-03-26.
  8. "Gene: Ckap4 (ENSMUSG00000046841) - Summary - Mus musculus - Ensembl genome browser 89". may2017.archive.ensembl.org. Retrieved 2018-03-26.
  9. pubmeddev. "PubMed Links for Gene (Select 10970) - PubMed - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2018-03-26.
  10. pubmeddev. "PubMed Links for Gene (Select 216197) - PubMed - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2018-03-26.
  11. "CKAP4 cytoskeleton associated protein 4 [Homo sapiens (human)] - Gene - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2018-03-26.
  12. 1 2 Mundy DI, Warren G (January 1992). "Mitosis and inhibition of intracellular transport stimulate palmitoylation of a 62-kD protein". The Journal of Cell Biology. 116 (1): 135–46. doi:10.1083/jcb.116.1.135. PMC   2289273 . PMID   1730740.
  13. Schweizer A, Ericsson M, Bächi T, Griffiths G, Hauri HP (March 1993). "Characterization of a novel 63 kDa membrane protein. Implications for the organization of the ER-to-Golgi pathway". Journal of Cell Science. 104 (3): 671–83. doi:10.1242/jcs.104.3.671. PMID   8314869.
  14. 1 2 Razzaq TM, Bass R, Vines DJ, Werner F, Whawell SA, Ellis V (October 2003). "Functional regulation of tissue plasminogen activator on the surface of vascular smooth muscle cells by the type-II transmembrane protein p63 (CKAP4)". The Journal of Biological Chemistry. 278 (43): 42679–85. doi: 10.1074/jbc.M305695200 . PMID   12913003.
  15. 1 2 Gupta N, Manevich Y, Kazi AS, Tao JQ, Fisher AB, Bates SR (September 2006). "Identification and characterization of p63 (CKAP4/ERGIC-63/CLIMP-63), a surfactant protein A binding protein, on type II pneumocytes". American Journal of Physiology. Lung Cellular and Molecular Physiology. 291 (3): L436-46. doi:10.1152/ajplung.00415.2005. PMID   16556726. S2CID   24903427.
  16. 1 2 Planey SL, Keay SK, Zhang CO, Zacharias DA (March 2009). "Palmitoylation of cytoskeleton associated protein 4 by DHHC2 regulates antiproliferative factor-mediated signaling". Molecular Biology of the Cell. 20 (5): 1454–63. doi:10.1091/mbc.E08-08-0849. PMC   2649263 . PMID   19144824.
  17. 1 2 Li MH, Dong LW, Li SX, Tang GS, Pan YF, Zhang J, Wang H, Zhou HB, Tan YX, Hu HP, Wang HY (September 2013). "Expression of cytoskeleton-associated protein 4 is related to lymphatic metastasis and indicates prognosis of intrahepatic cholangiocarcinoma patients after surgery resection". Cancer Letters. 337 (2): 248–53. doi:10.1016/j.canlet.2013.05.003. PMID   23665508.
  18. Schweizer A, Rohrer J, Hauri HP, Kornfeld S (July 1994). "Retention of p63 in an ER-Golgi intermediate compartment depends on the presence of all three of its domains and on its ability to form oligomers". The Journal of Cell Biology. 126 (1): 25–39. doi:10.1083/jcb.126.1.25. PMC   2120087 . PMID   8027183.
  19. Schweizer A, Rohrer J, Slot JW, Geuze HJ, Kornfeld S (June 1995). "Reassessment of the subcellular localization of p63". Journal of Cell Science. 108 (6): 2477–85. doi:10.1242/jcs.108.6.2477. PMID   7673362.
  20. 1 2 3 Klopfenstein DR, Klumperman J, Lustig A, Kammerer RA, Oorschot V, Hauri HP (June 2001). "Subdomain-specific localization of CLIMP-63 (p63) in the endoplasmic reticulum is mediated by its luminal alpha-helical segment". The Journal of Cell Biology. 153 (6): 1287–300. doi:10.1083/jcb.153.6.1287. PMC   2192027 . PMID   11402071.
  21. Shibata Y, Shemesh T, Prinz WA, Palazzo AF, Kozlov MM, Rapoport TA (November 2010). "Mechanisms determining the morphology of the peripheral ER". Cell. 143 (5): 774–88. doi:10.1016/j.cell.2010.11.007. PMC   3008339 . PMID   21111237.
  22. Nikonov AV, Hauri HP, Lauring B, Kreibich G (July 2007). "Climp-63-mediated binding of microtubules to the ER affects the lateral mobility of translocon complexes". Journal of Cell Science. 120 (13): 2248–58. doi:10.1242/jcs.008979. PMID   17567679. S2CID   6766979.
  23. Vedrenne C, Klopfenstein DR, Hauri HP (April 2005). "Phosphorylation controls CLIMP-63-mediated anchoring of the endoplasmic reticulum to microtubules". Molecular Biology of the Cell. 16 (4): 1928–37. doi:10.1091/mbc.E04-07-0554. PMC   1073672 . PMID   15703217.
  24. Zhang J, Planey SL, Ceballos C, Stevens SM, Keay SK, Zacharias DA (July 2008). "Identification of CKAP4/p63 as a major substrate of the palmitoyl acyltransferase DHHC2, a putative tumor suppressor, using a novel proteomics method". Molecular & Cellular Proteomics. 7 (7): 1378–88. doi: 10.1074/mcp.M800069-MCP200 . PMC   2493380 . PMID   18296695.
  25. Sandoz PA, van der Goot FG (April 2015). "How many lives does CLIMP-63 have?". Biochemical Society Transactions. 43 (2): 222–8. doi:10.1042/BST20140272. PMC   4627503 . PMID   25849921.
  26. Li SX, Tang GS, Zhou DX, Pan YF, Tan YX, Zhang J, Zhang B, Ding ZW, Liu LJ, Jiang TY, Hu HP, Dong LW, Wang HY (May 2014). "Prognostic significance of cytoskeleton-associated membrane protein 4 and its palmitoyl acyltransferase DHHC2 in hepatocellular carcinoma". Cancer. 120 (10): 1520–31. doi: 10.1002/cncr.28593 . PMID   24863391. S2CID   37070876.

Further reading