CLEC16A

Last updated
CLEC16A
Identifiers
Aliases CLEC16A , Gop-1, KIAA0350, C-type lectin domain family 16 member A, C-type lectin domain containing 16A
External IDs OMIM: 611303 MGI: 1921624 HomoloGene: 71019 GeneCards: CLEC16A
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001243403
NM_015226

NM_001204229
NM_177562

RefSeq (protein)

NP_001230332
NP_056041

NP_001191158
NP_808230

Location (UCSC) Chr 16: 10.94 – 11.18 Mb Chr 16: 10.36 – 10.56 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

C-type lectin domain family 16, also known as CLEC16A, is a protein that in humans is encoded by the CLEC16A gene. [5] [6] [7]

Contents

Function

Little is known regarding the function of the CLEC16A protein, however it is shown to be highly expressed on B-lymphocytes, natural killer (NK) and dendritic cells. Despite its name CLEC16A may not function as a lectin because its C-type lectin domain is only 20 amino-acids long. [8]

Clinical significance

Polymorphisms in the CLEC16A gene are associated with an increased risk of multiple sclerosis [9] as well as type I diabetes. [8]

Related Research Articles

<span class="mw-page-title-main">Apolipoprotein E</span> Cholesterol-transporting protein most notably implicated in Alzheimers disease

Apolipoprotein E (Apo-E) is a protein involved in the metabolism of fats in the body of mammals. A subtype is implicated in the Alzheimer's disease and cardiovascular diseases. It is encoded in humans by the gene APOE.

<span class="mw-page-title-main">Zinc transporter 8</span> Protein found in humans

Zinc transporter 8 (ZNT8) is a protein that in humans is encoded by the SLC30A8 gene. ZNT8 is a zinc transporter related to insulin secretion in humans. In particular, ZNT8 is critical for the accumulation of zinc into beta cell secretory granules and the maintenance of stored insulin as tightly packaged hexamers. Certain alleles of the SLC30A8 gene may increase the risk for developing type 2 diabetes, but a loss-of-function mutation appears to greatly reduce the risk of diabetes.

25-Hydroxyvitamin D 1-alpha-hydroxylase Mammalian protein found in Homo sapiens

25-Hydroxyvitamin D 1-alpha-hydroxylase also known as calcidiol 1-monooxygenase or cytochrome p450 27B1 (CYP27B1) or simply 1-alpha-hydroxylase is a cytochrome P450 enzyme that in humans is encoded by the CYP27B1 gene.

<span class="mw-page-title-main">FTO gene</span> Protein-coding gene in the species Homo sapiens

Fat mass and obesity-associated protein also known as alpha-ketoglutarate-dependent dioxygenase FTO is an enzyme that in humans is encoded by the FTO gene located on chromosome 16. As one homolog in the AlkB family proteins, it is the first mRNA demethylase that has been identified. Certain alleles of the FTO gene appear to be correlated with obesity in humans.

<span class="mw-page-title-main">TCF7L2</span> Protein-coding gene in humans

Transcription factor 7-like 2 , also known as TCF7L2 or TCF4, is a protein acting as a transcription factor that, in humans, is encoded by the TCF7L2 gene. The TCF7L2 gene is located on chromosome 10q25.2–q25.3, contains 19 exons. As a member of the TCF family, TCF7L2 can form a bipartite transcription factor and influence several biological pathways, including the Wnt signalling pathway.

<span class="mw-page-title-main">Genome-wide association study</span> Study of genetic variants in different individuals

In genomics, a genome-wide association study, is an observational study of a genome-wide set of genetic variants in different individuals to see if any variant is associated with a trait. GWA studies typically focus on associations between single-nucleotide polymorphisms (SNPs) and traits like major human diseases, but can equally be applied to any other genetic variants and any other organisms.

<span class="mw-page-title-main">HLA-DQ6</span>

HLA-DQ6 (DQ6) is a human leukocyte antigen serotype within HLA-DQ (DQ) serotype group. The serotype is determined by the antibody recognition of β6 subset of DQ β-chains. The β-chain of DQ isoforms are encoded by HLA-DQB1 locus and DQ6 are encoded by the HLA-DQB1*06 allele group. This group currently contains many common alleles, DQB1*0602 is the most common. HLA-DQ6 and DQB1*06 are almost synonymous in meaning. DQ6 β-chains combine with α-chains, encoded by genetically linked HLA-DQA1 alleles, to form the cis-haplotype isoforms. For DQ6, however, cis-isoform pairing only occurs with DQ1 α-chains. There are many haplotypes of DQ6.

<span class="mw-page-title-main">HLA-DQB1</span> Protein-coding gene in the species Homo sapiens

Major histocompatibility complex, class II, DQ beta 1, also known as HLA-DQB1, is a human gene and also denotes the genetic locus that contains this gene. The protein encoded by this gene is one of two proteins that are required to form the DQ heterodimer, a cell surface receptor essential to the function of the immune system.

<span class="mw-page-title-main">Liver X receptor alpha</span> Protein-coding gene in the species Homo sapiens

Liver X receptor alpha (LXR-alpha) is a nuclear receptor protein that in humans is encoded by the NR1H3 gene.

<span class="mw-page-title-main">PTPN22</span> Protein-coding gene in the species Homo sapiens

Protein tyrosine phosphatase non-receptor type 22 (PTPN22) is a cytoplasmatic protein encoded by gene PTPN22 and a member of PEST family of protein tyrosine phosphatases. This protein is also called "PEST-domain Enriched Phosphatase" ("PEP") or "Lymphoid phosphatase" ("LYP"). The name LYP is used strictly for the human protein encoded by PTPN22, but the name PEP is used only for its mouse homolog. However, both proteins have similar biological functions and show 70% identity in amino acid sequence. PTPN22 functions as a negative regulator of T cell receptor (TCR) signaling, which maintains homeostasis of T cell compartment.

<span class="mw-page-title-main">TNIP1</span> Protein-coding gene in the species Homo sapiens

TNFAIP3-interacting protein 1, also known as ABIN-1, is a protein that in humans is encoded by the TNIP1 gene.

<span class="mw-page-title-main">TMEM106B</span> Protein-coding gene in the species Homo sapiens

Transmembrane protein 106B is a protein that is encoded by the TMEM106B gene. It is found primarily within neurons and oligodendrocytes in the central nervous system with its subcellular location being in lysosomal membranes. TMEM106B helps facilitate important functions for maintaining a healthy lysosome, and therefore certain mutations and polymorphisms can lead to issues with proper lysosomal function. Lysosomes are in charge of clearing out mis-folded proteins and other debris, and thus, play an important role in neurodegenerative diseases that are driven by the accumulation of various mis-folded proteins and aggregates. Due to its impact on lysosomal function, TMEM106B has been investigated and found to be associated to multiple neurodegenerative diseases.

<span class="mw-page-title-main">IL2RA</span> Mammalian protein found in Homo sapiens

The Interleukin-2 receptor alpha chain is a protein involved in the assembly of the high-affinity Interleukin-2 receptor, consisting of alpha (IL2RA), beta (IL2RB) and the common gamma chain (IL2RG). As the name indicates, this receptor interacts with Interleukin-2, a pleiotropic cytokine which plays an important role in immune homeostasis.

<span class="mw-page-title-main">Autoimmune disease</span> Disorders of adaptive immune system

An autoimmune disease is a condition that results from an anomalous response of the adaptive immune system, wherein it mistakenly targets and attacks healthy, functioning parts of the body as if they were foreign organisms. It is estimated that there are more than 80 recognized autoimmune diseases, with recent scientific evidence suggesting the existence of potentially more than 100 distinct conditions. Nearly any body part can be involved.

The Center for Applied Genomics is a research center at the Children's Hospital of Philadelphia that focuses on genomics research and the utilization of basic research findings in the development of new medical treatments.

<span class="mw-page-title-main">CDKN2BAS</span> Non-coding RNA in the species Homo sapiens

CDKN2B-AS, also known as ANRIL is a long non-coding RNA consisting of 19 exons, spanning 126.3kb in the genome, and its spliced product is a 3834bp RNA. It is located within the p15/CDKN2B-p16/CDKN2A-p14/ARF gene cluster, in the antisense direction. Single nucleotide polymorphisms (SNPs) which alter the expression of CDKN2B-AS are associated with human healthy life expectancy, as well as with multiple diseases, including coronary artery disease, diabetes and many cancers. It binds to chromobox 7 (CBX7) within the polycomb repressive complex 1 and to SUZ12, a component of polycomb repression complex 2 and through these interactions is involved in transcriptional repression.

Project MinE is an independent large scale whole genome research project that was initiated by 2 patients with amyotrophic lateral sclerosis and started on World ALS Day, June 21, 2013.

Predictive genomics is at the intersection of multiple disciplines: predictive medicine, personal genomics and translational bioinformatics. Specifically, predictive genomics deals with the future phenotypic outcomes via prediction in areas such as complex multifactorial diseases in humans. To date, the success of predictive genomics has been dependent on the genetic framework underlying these applications, typically explored in genome-wide association (GWA) studies. The identification of associated single-nucleotide polymorphisms underpin GWA studies in complex diseases that have ranged from Type 2 Diabetes (T2D), Age-related macular degeneration (AMD) and Crohn's disease.

<span class="mw-page-title-main">Polygenic score</span> Numerical score aimed at predicting a trait based on variation in multiple genetic loci

In genetics, a polygenic score (PGS) is a number that summarizes the estimated effect of many genetic variants on an individual's phenotype. The PGS is also called the polygenic index (PGI) or genome-wide score; in the context of disease risk, it is called a polygenic risk score or genetic risk score. The score reflects an individual's estimated genetic predisposition for a given trait and can be used as a predictor for that trait. It gives an estimate of how likely an individual is to have a given trait based only on genetics, without taking environmental factors into account; and it is typically calculated as a weighted sum of trait-associated alleles.

<span class="mw-page-title-main">T-cell activation RhoGTPase activating protein</span> Protein-coding gene in the species Homo sapiens

T-cell activation RhoGTPase activating protein is a protein that in humans is encoded by the TAGAP gene.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000038532 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000068663 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. "Entrez Gene: C-type lectin domain family 16".
  6. Nagase T, Ishikawa K, Nakajima D, Ohira M, Seki N, Miyajima N, Tanaka A, Kotani H, Nomura N, Ohara O (April 1997). "Prediction of the coding sequences of unidentified human genes. VII. The complete sequences of 100 new cDNA clones from brain which can code for large proteins in vitro". DNA Research. 4 (2): 141–50. doi: 10.1093/dnares/4.2.141 . PMID   9205841.
  7. Hakonarson H, Grant SF, Bradfield JP, Marchand L, Kim CE, Glessner JT, Grabs R, Casalunovo T, Taback SP, Frackelton EC, Lawson ML, Robinson LJ, Skraban R, Lu Y, Chiavacci RM, Stanley CA, Kirsch SE, Rappaport EF, Orange JS, Monos DS, Devoto M, Qu HQ, Polychronakos C (August 2007). "A genome-wide association study identifies KIAA0350 as a type 1 diabetes gene". Nature. 448 (7153): 591–4. Bibcode:2007Natur.448..591H. doi:10.1038/nature06010. PMID   17632545. S2CID   4426917.
  8. 1 2 International Multiple Sclerosis Genetics Consortium (IMSGC) (January 2009). International Multiple Sclerosis Genetics Consortium (IMSGC). "The expanding genetic overlap between multiple sclerosis and type I diabetes". Genes and Immunity. 10 (1): 11–4. doi:10.1038/gene.2008.83. PMC   2718424 . PMID   18987646.
  9. Hoppenbrouwers IA, Aulchenko YS, Janssens AC, Ramagopalan SV, Broer L, Kayser M, Ebers GC, Oostra BA, van Duijn CM, Hintzen RQ (November 2009). "Replication of CD58 and CLEC16A as genome-wide significant risk genes for multiple sclerosis". Journal of Human Genetics. 54 (11): 676–80. doi: 10.1038/jhg.2009.96 . PMID   19834503.

Further reading