CLSPN

Last updated
CLSPN
Identifiers
Aliases CLSPN , claspin
External IDs OMIM: 605434 MGI: 2445153 HomoloGene: 11138 GeneCards: CLSPN
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001190481
NM_022111
NM_001330490

NM_175554

RefSeq (protein)

NP_001177410
NP_001317419
NP_071394

NP_780763
NP_001392727
NP_001392728
NP_001392729
NP_001392730

Contents

Location (UCSC) Chr 1: 35.72 – 35.77 Mb Chr 4: 126.45 – 126.49 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Claspin is a protein that in humans is encoded by the CLSPN gene. [5] [6] [7]

Function

Xenopus claspin is an essential upstream regulator of checkpoint kinase 1 and triggers a checkpoint arrest of the cell cycle in the presence of DNA templates in Xenopus egg extracts. The human gene appears to be the homolog Xenopus claspin and its function has not been determined. [7]

Interactions

CLSPN has been shown to interact with:

Related Research Articles

<span class="mw-page-title-main">Cell cycle checkpoint</span> Control mechanism in the eukaryotic cell cycle

Cell cycle checkpoints are control mechanisms in the eukaryotic cell cycle which ensure its proper progression. Each checkpoint serves as a potential termination point along the cell cycle, during which the conditions of the cell are assessed, with progression through the various phases of the cell cycle occurring only when favorable conditions are met. There are many checkpoints in the cell cycle, but the three major ones are: the G1 checkpoint, also known as the Start or restriction checkpoint or Major Checkpoint; the G2/M checkpoint; and the metaphase-to-anaphase transition, also known as the spindle checkpoint. Progression through these checkpoints is largely determined by the activation of cyclin-dependent kinases by regulatory protein subunits called cyclins, different forms of which are produced at each stage of the cell cycle to control the specific events that occur therein.

<span class="mw-page-title-main">Ataxia telangiectasia and Rad3 related</span> Protein kinase that detects DNA damage and halts cell division

Serine/threonine-protein kinase ATR, also known as ataxia telangiectasia and Rad3-related protein (ATR) or FRAP-related protein 1 (FRP1), is an enzyme that, in humans, is encoded by the ATR gene. It is a large kinase of about 301.66 kDa. ATR belongs to the phosphatidylinositol 3-kinase-related kinase protein family. ATR is activated in response to single strand breaks, and works with ATM to ensure genome integrity.

<span class="mw-page-title-main">Eukaryotic DNA replication</span> DNA replication in eukaryotic organisms

Eukaryotic DNA replication is a conserved mechanism that restricts DNA replication to once per cell cycle. Eukaryotic DNA replication of chromosomal DNA is central for the duplication of a cell and is necessary for the maintenance of the eukaryotic genome.

<span class="mw-page-title-main">CHEK2</span> Protein-coding gene in humans

CHEK2 is a tumor suppressor gene that encodes the protein CHK2, a serine-threonine kinase. CHK2 is involved in DNA repair, cell cycle arrest or apoptosis in response to DNA damage. Mutations to the CHEK2 gene have been linked to a wide range of cancers.

<span class="mw-page-title-main">H2AFX</span> Histone protein from the H2A family

H2A histone family member X is a type of histone protein from the H2A family encoded by the H2AFX gene. An important phosphorylated form is γH2AX (S139), which forms when double-strand breaks appear.

<span class="mw-page-title-main">CHEK1</span> Protein-coding gene in humans

Checkpoint kinase 1, commonly referred to as Chk1, is a serine/threonine-specific protein kinase that, in humans, is encoded by the CHEK1 gene. Chk1 coordinates the DNA damage response (DDR) and cell cycle checkpoint response. Activation of Chk1 results in the initiation of cell cycle checkpoints, cell cycle arrest, DNA repair and cell death to prevent damaged cells from progressing through the cell cycle.

<span class="mw-page-title-main">TP53BP1</span> Protein-coding gene in the species Homo sapiens

Tumor suppressor p53-binding protein 1 also known as p53-binding protein 1 or 53BP1 is a protein that in humans is encoded by the TP53BP1 gene.

<span class="mw-page-title-main">Bloom syndrome protein</span> Mammalian protein found in humans

Bloom syndrome protein is a protein that in humans is encoded by the BLM gene and is not expressed in Bloom syndrome.

<span class="mw-page-title-main">BTRC (gene)</span> Protein-coding gene in the species Homo sapiens

F-box/WD repeat-containing protein 1A (FBXW1A) also known as βTrCP1 or Fbxw1 or hsSlimb or pIkappaBalpha-E3 receptor subunit is a protein that in humans is encoded by the BTRC gene.

<span class="mw-page-title-main">Rad50</span> Protein-coding gene in the species Homo sapiens

DNA repair protein RAD50, also known as RAD50, is a protein that in humans is encoded by the RAD50 gene.

<span class="mw-page-title-main">RAD1 homolog</span> Protein-coding gene in the species Homo sapiens

Cell cycle checkpoint protein RAD1 is a protein that in humans is encoded by the RAD1 gene.

<span class="mw-page-title-main">DNA replication factor CDT1</span> Protein-coding gene in the species Homo sapiens

CDT1 is a protein that in humans is encoded by the CDT1 gene. It is a licensing factor that functions to limit DNA from replicating more than once per cell cycle.

<span class="mw-page-title-main">TOPBP1</span> Protein-coding gene in the species Homo sapiens

DNA topoisomerase 2-binding protein 1 (TOPBP1) is a scaffold protein that in humans is encoded by the TOPBP1 gene.

<span class="mw-page-title-main">MDC1</span> Protein-coding gene in the species Homo sapiens

Mediator of DNA damage checkpoint protein 1 is a 2080 amino acid long protein that in humans is encoded by the MDC1 gene located on the short arm (p) of chromosome 6. MDC1 protein is a regulator of the Intra-S phase and the G2/M cell cycle checkpoints and recruits repair proteins to the site of DNA damage. It is involved in determining cell survival fate in association with tumor suppressor protein p53. This protein also goes by the name Nuclear Factor with BRCT Domain 1 (NFBD1).

<span class="mw-page-title-main">Cell division cycle 7-related protein kinase</span> Protein-coding gene in the species Homo sapiens

Cell division cycle 7-related protein kinase is an enzyme that in humans is encoded by the CDC7 gene. The Cdc7 kinase is involved in regulation of the cell cycle at the point of chromosomal DNA replication. The gene CDC7 appears to be conserved throughout eukaryotic evolution; this means that most eukaryotic cells have the Cdc7 kinase protein.

<span class="mw-page-title-main">CDC45-related protein</span> Protein-coding gene in the species Homo sapiens

CDC45 is a protein that in humans is encoded by the CDC45L gene.

<span class="mw-page-title-main">FANCL</span> Protein-coding gene in the species Homo sapiens

E3 ubiquitin-protein ligase FANCL is an enzyme that in humans is encoded by the FANCL gene.

<span class="mw-page-title-main">FBXW11</span> Protein-coding gene in the species Homo sapiens

βTrCP2 is a protein that in humans is encoded by the FBXW11 gene.

HERC2 is a giant E3 ubiquitin protein ligase, implicated in DNA repair regulation, pigmentation and neurological disorders. It is encoded by a gene of the same name belonging to the HERC family, which typically encodes large protein products with C-terminal HECT domains and one or more RCC1-like (RLD) domains.

<span class="mw-page-title-main">G2-M DNA damage checkpoint</span>

The G2-M DNA damage checkpoint is an important cell cycle checkpoint in eukaryotic organisms that ensures that cells don't initiate mitosis until damaged or incompletely replicated DNA is sufficiently repaired. Cells with a defective G2-M checkpoint will undergo apoptosis or death after cell division if they enter the M phase before repairing their DNA. The defining biochemical feature of this checkpoint is the activation of M-phase cyclin-CDK complexes, which phosphorylate proteins that promote spindle assembly and bring the cell to metaphase.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000092853 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000042489 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Kumagai A, Dunphy WG (Nov 2000). "Claspin, a novel protein required for the activation of Chk1 during a DNA replication checkpoint response in Xenopus egg extracts". Mol Cell. 6 (4): 839–49. doi: 10.1016/S1097-2765(05)00092-4 . PMID   11090622.
  6. 1 2 Chini CC, Chen J (Aug 2003). "Human claspin is required for replication checkpoint control". J Biol Chem. 278 (32): 30057–62. doi: 10.1074/jbc.M301136200 . PMID   12766152.
  7. 1 2 "Entrez Gene: CLSPN claspin homolog (Xenopus laevis)".
  8. Lin SY, Li K, Stewart GS, Elledge SJ (2004). "Human Claspin works with BRCA1 to both positively and negatively regulate cell proliferation". Proc. Natl. Acad. Sci. U.S.A. 101 (17): 6484–9. Bibcode:2004PNAS..101.6484L. doi: 10.1073/pnas.0401847101 . PMC   404071 . PMID   15096610.
  9. 1 2 3 Serçin O, Kemp MG (May 2011). "Characterization of functional domains in human Claspin". Cell Cycle. 10 (10): 1599–606. doi:10.4161/cc.10.10.15562. PMC   3127160 . PMID   21478680.
  10. Faustrup H, Bekker-Jensen S, Bartek J, Lukas J, Mailand N (2009). "USP7 counteracts SCFbetaTrCP- but not APCCdh1-mediated proteolysis of Claspin". J. Cell Biol. 184 (1): 13–9. doi:10.1083/jcb.200807137. PMC   2615094 . PMID   19124652.

Further reading